FTWARE MAGAZINE

ebruary 1982 Volumell, No.9 (ISSN0279-2575, USPS 597-830)




v ARt h B




e T,
——T ]

THE SOFTWARE MAGAZINE

February 1982

Editor-in-Chief: Edward H. Currie
Managing Editor: Jane Mellin
Administrative Assistant: Patricia Matthews
Production Assistant: K. Gartner
Typographer: Harold Black

Volume ll, No. 9

Contents Software Notes
Opinion The Undocumented “CALL" Instruction
in dBASE II™ Version 2.02 19

Editorial Comments Macros Of The Month

by Edward H. Currie 2 Edited by Michael Olfe 22
The Pipeline Software Products Brief: DDUMP and DTEST

by Carl Warren 3 by Jim Mills 25
Z0s0 19  C-bits (All About BDS C Version 1.45)
Letters 21 Reported by Bill Norris 37
Features Product Status Reports

Financial Accounting On The Computer
by Steve Patchen and John Snow 8
8080 Assembler Programming Tutorial
Control of the Execution Sequence
by Ward Christensen 13
Using the CP/M-80® BIOS For
Direct Disk Accessing

by Ron Fowler 2F
Full Screen Editors — Part 1

by Ward Christensen 33
T/MAKER II™: A Continuing Review

by Raymond J. Sonoff 36

Copyright © 1982, by Lifelines Publishing Corporation. No portion of this publication may be
reproduced without the written permission of the publisher. The single issue price is $2.50 for
copies sent to destinations in the U.S., Canada, or Mexico. The single issue price for copies sent
to all other countries is $3.60. All checks should be made payable to Lifelines Publishing Cor-
poration. Foreign checks must be in U.S. dollars, drawn on a U.S. bank; checks, money orders,
VISA, and MasterCard are acceptable. All orders must be pre-paid. Please send all cor-
respondence to the Publisher at the below address.

Lifelines is a registered trademark of Lifelines Publishing Corp. The Software Magazine is a
trademark of Lifelines Publishing Corp.

SB-80 and SB-86 are trademarks of Lifeboat Associates.

dBASE |l is a trademark of Ashton-Tate.

FABS is a trademark of Computer Control Corp.

MAGSAM and MAGSORT are trademarks of Micro Applications Group.
PMATE is a trademark of Phoenix Software Associates, Ltd.

KIBITS is a trademark of Bess Garber and Seton Kasmir.

T/MAKER Il is a trademark of Peter Roizen.

WordStar is a trademark of MicroPro International Corp.

CP/M-80 and CP/M are registered trademarks of Digital Research, Inc.
The CP/M Users Group is not affiliated with Digital Research, Inc.
MS-DOS, MBASIC, XENIX, and Microsoft are trademarks of Microsoft, Inc.
TRS-80 Model Il is a trademark of Tandy Corp.

ZAP80 is a trademark of Phase Four Software, Inc.

Z80 is a trademark of Zilog Corporation.

New Versions 39
New Products e
Operating Systems and Hard Disk Modules 45
ZAP8O™ 46
Version List 50
Miscellaneous

Attention Dealers 7
Renew 12
Notice 18
Index 34
Gift Subscriptions 35
KIBITS™ 85
Change of Address 38

Lifelines (ISSN 0279-2575, USPS 597-830) is pub-
lished monthly at a subscription price of $18 for twelve
issues, when destined for the U.S., Canada, or Mexico,
$40 when destined for any other country. Second-
class postage paid at New York, New York. POST-
MASTER, please send changes of address to Lifelines
Publishing Corporation, 1651 Third Ave., New York,
N.Y. 10028.




Editorial Comments

THE OPERATING SYSTEM IS THE
THING WHEREIN ...

A number of you have requested de-
tails on the IBM Personal Computer
operating system, as a means of form-
ing your own comparison with other
sixteen bit operating systems. There-
fore this month a cursory examination
of Lifeboat Associates’ SB-86 (a.k.a.
MSDOS, a product of Microsoft) is
provided.

Aside from the fact that all of Micro-
soft’s languages are available for
SB-86, i.e. BASIC Interpreter, BASIC
Compiler, FORTRAN, COBOL and
Pascal, a wide variety of utilities per-
mit conversion of 8080/Z80 assembly
language code to 8086 assembly lan-
guage, reading of single density
CPM-80 disks, assembler, linker, etc.

Since SB-86 emulates system calls to
CP/M-80 one has merely to run 8080
source code programs through the IN-
TEL conversion program and assem-
ble them with the SB-86 assembler.
Almost all 8080 source code will work
following conversion to 8086 without
further modification. Thus conver-
sion to SB-86 is typically much easier
than to any other sixteen bit operating
system.

As in the case of UNIX, SB-86 simpli-
fies I/O to various physical devices by
using a single set of 1/O calls which
treat all devices the same from the
user’s point of view. Therefore, there
is no need to rewrite a program when a
new physical device is added to a sys-
tem. One immediate benefit is that
such device-independent I/O causes
all control characters to be handled by
different devices in the same way (e.g.
TAB).

Many operating systems exhibit a
characteristic rudeness when an error
occurs. How many times have you
found yourself staring at a screen in a
state of frustration trying to decide
what BDOS SELECT ERROR means?
You soon learned that this catch-all
epigram means, among other things,
that you are in deep yogurt as far as

2

your file is concerned! The only road
out of this swamp is typically a cold
boot, or, as we say in the trade, the
proverbial “reset to zero!” Thus when
such systems blow up while you are
editing a file ... well, you know the

story ...

When an error occurs SB-86 retries
three times the operation which led to
the error. If this proves unsuccessful,
SB-86 returns an error message and
waits for a user response. That's right
folks, gone are the days of warping
immediately, irrevocably, and irrepa-
rably at the speed of light into the twi-
light zone at the first sign of difficulty.
The user can attempt recovery rather
than having to reboot the system.

Since SB-86 is a truly relocatable oper-
ating system, the relocatable linking
loader can provide for separate seg-
ments. The COMMAND program in
SB-86 relocates the modules during
loading rather than loading them to
preset addresses. Therefore SB-86
does not have program space and lo-
cation restricted to the first 64K.

SB-86 has no practical limitation on
file or disk size since it uses 4-byte logi-
cal pointers compatible with those of
Microsoft's XENIX operating system
to provide disk and file sizes up to one
gigabyte.

Also files of different logical record
lengths can reside on the same disk-
ette. A unique feature of SB-86’s archi-
tecture is built-in blocking and de-
blocking of physical sectors. Those of
you who implement operating sys-
tems will appreciate the savings this
offers in developing a BIOS. Or, said
another way, 128 is no longer a sacro-
sanct number with of the attendent
headaches we all have suffered from.

SB-86 employs the concept of a tem-
plate for the command line inter-
preter. The term template refers to the
last input line entered. This technique
allows editing of a new line, if it
should be desirable to re-enter a line,
edit it and then execute the line. Text
entered at the command line level is

placed in an input buffer until the line
is terminated by a carriage return. The
depression of the return key causes the
buffer to be sent to the requesting pro-
gram for processing. But this same key
depression also causes a “template” to
be created in the input buffer.

The COMMAND program provided
in SB-86 handles communication be-
tween the user and the file manager. It
allows the user to display directories,
rename, delete and copy files, etc. A
batch facility is supported which can
be entered automatically when the
system is booted. In the event that a
batch file is not found upon booting,
the system immediately prompts the
user for the date and time. This is used
to date/time stamp files so that you
can easily tell the last time a file was
modified. Time/date stamping of files
allows one to tell whether an arbitrary
file is the latest version.

One interesting feature is the PAUSE
command. This is invoked in batch
files and may be used to prompt the
user. This command also suspends all
further activity until a carriage return
is entered.

EDLIN is a line text editor provided
with SB-86 that has lots of bells and
whistles. It allows lines of up to 255
characters.

DEBUG is a resident debugger which
allows the user to alter a program in
memory while debugging. If a com-
mand line contains an error it is re-
printed by DEBUG and an up-arrow
points to the error. Note that errors
which occur don't terminate the DE-
BUG mode but rather the command
line entered under DEBUG. One nice
feature is the ability to write a file from
memory to disk without leaving DE-
BUG. The SEARCH command allows
searching over a specified range of
RAM for a list of one or more bytes.
The TRACE command uses the hard-
ware trace feature of the 8088/8086 so
that it is possible to trace execution of
instructions in ROM. Inline disassem-
bly is also supported. Also INPUT and

(continued on page 48)

Lifelines, February 1982



The Pipeline

SOME THOUGHTS ABOUT DISK
DRIVES

A key element for any microcomputer
is the storage system. As a result of the
latest innovations in technology, you
can find just about anything you de-
sire from floppies to rigid disk drives.

Furthermore, controllers that make
the higher performance drives work in
a variety of systems are finally coming
available.

Making the choice of what to integrate
either from an end user’s or a systems
integrator’s point of view can be
tough. It can be easier, however, if
you have some inkling of what's avail-
able and the market dynamics.

Some market dynamics

It may appear obvious that the disk

]

Carl Warren

market is rapidly expanding. How-
ever, understanding where it's going
from a product viewpoint can be
something else again. Take for exam-
ple the playoff of 8-in. low-capacity
Winchester compared to the newer
5.25-in. models.

Should everything stay equal, with no
changes in capacity or other perfor-
mance factors, many believe that the
market would shape up, by ‘85, with
8-in. Winchesters stabilizing, and the
5.25-in. soaring on. Although this
market projection is based on blue
sky, it may not be far from wrong, for
several reasons.

The 8-in. market was slow in develop-
ing due to difficulties encountered by
many manufacturers in solving engi-
neering problems, and slowness in de-
liveries. Moreover, the real end user
(that’s the guy who puts the total sys-
tem to work in his business) wasn't

ready to accept the new technology in
the volumes expected. This was prob-
ably due to the high cost of money,
and many unanswered questions such
as backup, and what to do when the
disk gets full, or just plain breaks.

Furthermore, controller manufactur-
ers were faced with the problem of
building controllers without full defi-
nition of what the interface was going
to be. Consequently, many opted to
support the IMI and Shugart drives,
thus giving them the market, with
Shugart garnering the lion’s share (ap-
proximately 25,000 units).

Further cluttering the marketing pic-
ture was the introduction of the
5.25-in. Winchester at the 1980 NCC
in Anaheim. This drive not only ex-
cited many, but caused numerous
OEM designers to reevaluate previous
plans to incorporate the larger 8-in.

(continued next page)

.»PA RT FROM THE REST!

- MODEL
COLUMNS:

THROUGHPUT: (Ipm)

20 Char/line

40 Char/line

80 Char/line

132 Char/line

DUTY CYCLE (%)
HEAD WARRANTY
GRAPHICS:
RS 232:
FRICTION FEED:
TRACTOR FEED:
PIN FEED:

A FULL LINE OF 100% DUTY CYCLE PRINTERS

ML80 ML82A ML83A ML84
80 80 132 132 132
86 232 232 266
51 138 138 184
28 76 76 114
47 74 125
100 100 100 100 100
— 200 million characters —

» I Vv v [
Opt. Std. Std. Opt. Opt.
e P [ I —
Opt. Opt. vV I v
» » —_ — —

SL125 SL160 SL250 SL300 SLG

132 132 132 132
160 250 300 400
100 100 100 100
— 500 million characters —
—_ P — [
Opt. Opt. Opt. Opt.
7 I [ ¥

OKIDA -

Lifelines, Volume II, Number 9

DISTRIBUTED by: GRAYDO N-SHER MAN, INC.

(201) 467-1401 TWX #710-983-4375 (GRAYDON MAWD)



drive. Making the smaller drive even
more enticing was the use of a Shugart
like interface which meant that exist-
ing controller designs could work
handily with the small unit.

The picture becomes even more
blurred because 8-in. manufacturers
are aiming for the low-end of the mar-
ket that heretofore has been the prov-
ince of 14-in drives. At the same time,
5.25-in. makers are projecting designs
with 60 to 120 Mbytes of storage in as
little as two years.

This means of course that the market
will resegment. The 8-in. drives will
increase in capacity, probably leveling
out at 500M bytes; the 5.25-in. market
will most likely settle in at about 120
to 200 Mbytes, and the 14-in. market
will reach into the very high end, pro-
viding storage capacity in the gigabyte
range.

Essentially what appears to be hap-
pening is that the low-end is being
raised. Within a short two years, low-
end will not necessarily be equitable to
small.

Small capacities mean floppy

Even though the high-capacity range,
10M bytes and above, will be filled by
rigid disk technology, floppies will fill
the gap on the other side.

Already manufacturers, such as
Iomega, and Persci are offering high
capacity floppies to fill both backup
requirements and serve low-end stor-
age needs. Currently, drives offering
1Mbyte storage are the rule rather
than the exception, and 2 and 3M byte
versions aren't far behind, with a re-
ported showing by IBM of the so-
called Bright project in Japan this past
year—a 3Mbyte 8-in drive.

Both Jim Porter, president of Disk
Trends, and Ray Freeman, president
of Freeman Assoc. agree that the 8-in.
IBM compatible floppy have a long
life span. Moreover, Porter contends
that the newer thinline 8-in. drives will
make a significant impact on systems
designs. He points out, that the drives
most likely won't be used to replace
existing units, but will be employed in
designs just now on the drawing
boards. Porter apparently is right on
his projections. Already Tandon has
garnered a significant share of the

8-in. market with its thin-line series.
But there is a threat on the horizon
from Epson America. Reports are that
Epson will be introducing high-capa-
city (1Mbyte/drive) 5.25-in. very thin
floppies at NCC in Houston this year.

Porter expects a bullish marketplace
for all drive sizes. He however, hasn't
put a a handle on smaller floppies like
Sony’s 3.5-in. model. Freeman, how-
ever, is willing to speculate. He be-
lieves that the 3.5-in. drive is likely to
become a major product class espe-
cially in the office machine environ-
ment. Moreover, he expects the tiny
drive to increase in capacity, and
evolve into a rigid drive with an initial
capacity of 5Mbytes. Furthermore,
Freeman believes that designers can
expect this high-capacity mini-mini-
rigid rigid by 1983.

But Freeman may be off by a few
months on the 3.5-in Winchester. Ac-
cording to industry sources, you can
probably expect the baby Winchester
to start showing up in volume as early
as mid-year with a number of prod-
ucts integrating the product for a full
showing at NCC.

Although not confirmed, you might
do well to stick around the Sony,
Monroe, Osborne, and Otrona booths
to get a quick gander at the fledgling
drive.

The bottom line

Apparently, the real key to success in
cashing in on the disk market, appears
to be in guessing the storage needs as
far out as 5 yrs. while at the same time
providing the right product for now.
Many walk this tightrope by grabbing
on to any new drive that seems hot at
the time, and hoping it can be quickly
integrated into a system before the
competition.

This method, practiced by a number
of system integrators, is cause for
alarm, suggests Anova Corp’s CEO,
Dale Williams. He believes that it's the
responsibility of the the system de-
signer to become a problem solver for
the end user, rather than the other way
around; the designer should try to
provide a system that is totally inte-
grated and doesn't require any under-
standing on the part of the user. He be-
lieves that this approach may cause
some slowness in the developing mar-

ket; but in the end will produce a much
stronger one.

Others disagree, though, suggesting
that regardless of how the end-user
market is approached, the disk market
for all segments will continue to grow
at a rapid pace.

Some hot introductions

As examples of what'’s come available
in the last few months of 1981, con-
sider these drives form Shugart and
MPI.

The Shugart Assoc. SA-1100 series of
drives offer up to 33.9Mbytes of un-
formatted capacity, and an average
access time of 35msec. Plus Z-8 micro-
processor control of essential drive
functions.

The high-performance drive, which is
available in two models: SA1104
(20.3Mbytes), and SA1106 (33.9-
Mbytes) consists of: read/write and
control electronics, integrated direct
drive brushless DC spindle motor, air
filtration system, closed loop servo
system, and a shipping/parking lock
mechanism.

The drive is designed to be form com-
patible to the manufacturers SA1000
in size (fits standard 8-in. floppy form
factor [4.62-X8.55-X14.25-in.]), and
track capacity (500 tpi), and transfer
rate (4.34Mbits/sec). Moreover, both
the SA1104 and SA1106 employ an
SA1000 interface so that existing con-
troller designs can be employed, thus
reducing the amount of difficulty in
integrating the drives in the system.
The only requirement is to add an ad-
ditional head select to the interface
and controller lines.

The SA1100 drives employ the so-
called Fastrak closed loop servo posi-
tioning system. This system is made
up of the read/write heads mounted
on a ball bearing-supported carriage
which is positioned by a rotary voice
coil motor. The bottom surface of the
lowest disk contains the continuous
servo data used by the closed loop sys-
tem. This configuration permits the
500 tpi track density and the 35msec
average access time.

The voice coil rotary actuator coupled
with the track following servo permits
precise positioning of the read/write

Lifelines, February 1982



heads on the tracks. This is accom-
plished by the use of an Automatic
Gain Control (AGC) amplifier that
amplifies the low level differential
signal from the servo pre-amplifier.
The Position demodulator provides
the position error signal and AGC
control signal, which is all coupled
with information from the electronic
tachometer that tells the actuator its
travelling velocity, and the curve gen-
erator which sets up the velocity tra-
jectory during a seek. To ensure abso-
lute accuracy, position compensation
circuitry provides a positive phase
shift for servo control stability. All
this information is then fed into a sum-
ming amplifier that generates the ser-
vo error signal to control the servo
power driver.

Other characteristics of the drives are:
the SA1104, 20.3Mbyte model em-
ploys two platters providing three
data surfaces, and one servo surface
and uses four read/write heads. The
SA1106, on the other hand, uses three
platters providing five data surfaces,
and one servo surface with six heads.

Both models employ a direct drive
brushless DC motor which operates at
3125 RPM, plus eliminates the neces-
sity of providing AC line voltages.
Working in concert with the motor is
an electromagnetic spindle brake that
under control of the integrated uP pro-
vides a controlled slowing of the plat-
ter during powerdown or power out-
age situations. The drive requires only
+24VDC +/— 10% at 4.0A and
+5VDC +/— 5% at 4.0A for the
motor and associated logic circuits. In
addition, both units provide 6.77
Mbytes (unformatted) capacity per
surface (10.4Kbytes per track), at a re-
cording density of 6006bpi.

The integrated Z-8 microprocessor
provides intelligent control of the
servo system, plus self-testing of the
read/write channels, motor control
and breaking. And it controls the
safety features by monitoring both the
drive power and motor speed, bring-
ing the head assembly into a safe area
when either begin to fall below the
specified operating ranges.

Because rigid media can and do have
defects that are a result of manufactur-
ing, the SA1100 drives implement a
media defect map on cylinder 659 re-
corded in the manufacturer’s SA1000
format. Defect location information is

Lifelines, Volume II, Number 9

identified by the byte position with re-
spect to the index mark of the defec-
tive track. Moreover, the defective
track is further identified by the cylin-
der and head numbers; its size is speci-
fied in length which covers an area of
bit cells on the specified track. The de-
fect record information is written in
sequence, starting with the smallest
cylinder address and increasing order
in cylinder number. Shugart provides
a hardcopy map of the defect informa-
tion to assist designers in assigning
alternate tracks, or in providing
lengthened interrecord gaps (the gap
appears over the defect).

You can expect to pay from $1600 to
$1900 for these drives in OEM quanti-
ties, and systems will more than likely
be in the $4000 + range.

For those of you looking for another
5.25-in. Winchester, you might want
to at least look at MPI's spec sheet.

The MPI Model 10 Super-Micro Win-
chester features 10 Mbytes formatted
capacity (12.06 unformatted), and an
average access time of 25msec which is
approximately three times faster than
similar sized Winchesters.

The Model 10, which measures 3.25 x
5.75 x 8-in., fits the same form factor
as conventional 5.25-in. flexible
drives, employs two platters for a
total of four surfaces, with 3 Mbytes
unformatted capacity per surface
(8900 bytes per surface). The format-
ted capacity is 2.5Mbytes per surface,
7433 bytes per track and 232 bytes per
sector, with 32 sectors per track.

The drive which has 371 tracks per
inch (tpi),(337.5 cylinders per surface)
and a bit density of 8000 bpi, sports a
§mbit/sec transfer rate, a track to
track access time of 3 msec, and an
average latency of 7.5msec.

Interfacing to the host controller is ac-
complished using either a Seagate
ST-506 or Shugart Associates SA 1000
compatible interface.

Power requirements for the model 10
are: +12V at 1.8-3.3A and +5V at
1.5A; typical rotational speed is 4000
RPM, with an ambient operating tem-
perature range of 50 to 115 degrees F.
This drive is priced at about $995(500)
and will probably top out in a system
for under $2000. Of course one has to
assume that deliveries will be on time

and that the reliability factor will
stand up.

Basics of magnetic-head design

Disk drives use magnetic heads to read
and write data; like many other things
associated with the computer industry
there is frequently some misunder-
standing as to how they work.

Magnetic heads are nothing more than
small high-performance electromag-
nets. And in operation, they produce a
flux at the read /write gap-a tiny open-
ing separating the poles. When ‘flux’ is
produced, it isn't confined to the space
between the gap but ‘fringes’ to either
side, thus causing a splattering effect.
When this occurs on a diskette, the re-
sult can be unwanted information in
the track gaps causing errors on read

back.

Essentially, there are three ways
around this problem. One solution is
to provide sufficient gap width be-
tween tracks so that fringing would
have no effect. This would work but
could, for example, reduce the effec-
tive tpi of a 48-tpi drive to half. Conse-
quently, this approach is not cost-per-
formance effective. One can also em-
ploy either a straddle erase head, or a
tunnel erase head.

With the straddle erase head, either
side of the read/write core has an erase
core whose gap is perpendicular to
that of the main gap. This, as a conse-
quence, means that the erase gaps are
small, and permits the placing of
tracks closer together. When this type
of head is writing, the erase heads are
turned on and ‘straddle’ the desired
track. This forces the write current to
be narrow and follow the center-line
of the track. Of course should the head
be skewed by more than 9-degrees (the
amount IBM says is permissible) the
data track will be overwritten by the
erase heads.

The tunnel erase head, although per-
forming the same job as the straddle
erase, performs it in a different man-
ner. This head, developed and used by
IBM, uses two erase cores mounted
well behind the read/write gap and
core. The direction of flux is parallel to
that of the read/write gap, and as a
consequence can cause a fringing ef-
fect to adjacent tracks. When this type
of head is used, it is turned on after the
(continued next page)
5



read/write head makes a flux reversal.
Although this is one way of imple-
menting the head, it can be operated in
much the same manner as the straddle
erase.

Interestingly, a medium written on
drives of similar capacity, but em-
ploying different head designs is inter-
changeable. According to various de-
signers the interchange problem oc-
curs primarily with high density de-
signs.

About thin-film heads

Because information needs are grow-
ing the necessity of providing better
storage systems is keeping pace. One
way disk manufacturers are attacking
the problem is by increasing the areal
densities of drives.

Designers have concluded that ferrite
heads won't permit densities of 1000
tpi and 14,000 bpi (the theoretical
limit) simply because the gap can't be
machined fine enough, nor the slider
reduced to permit lower flying
heights. Therefore, many are consid-
ering thin-film heads.

By employing semi-conductor meth-
ods to manufacture the heads on ce-
ramic substrates, gaps sizes well under
1-uin. can be achieved as can sliders
that will fly at 10 to 12-uin.

Many observers expect heads of this
class to be used exclusively in high-
performance drives in the next two
years, or even sooner if yields can be
brought up and prices down.

Interestingly, Seagate Technology re-
evaluated the use of thin-film heads in
the model ST-512, and have rede-
signed the product to use ferrite tech-
nology. The problem appears to be
that manufacturers of thin-film heads
aren't able to deliver reliable heads in
volume.

Understand those terms

Another problem that seems to creep
into any discussion of disk drives is an
inexact understanding of what certain
terms mean.

Frequently, designers and marketers
let the terms roll off their tongues with
little thought as to the accuracy of

their meaning. The following glos-
sary, however, should set you straight
and maybe give you some extra in-
sight you may not have had before.

Access time-The speed with which a
particular sector is found for the writ-
ing or reading of data is gauged by the
‘access time’. First the head must be
positioned over the proper track,
which requires a ‘seek time’, the
proper sector of the track must come
under the head which involves the
‘latency time’. Typical access times
range from 10 to 100 msec.

Areal Density-Is the product of the
number of bits per unit length (bpi),
along the track and the number of
tracks per unit length (tpi).

Band actuation-Is a positioning mech-
anism that permits quick movement of
aread/write head assembly to the cor-
rect track. Two types of bands exist;
the taut band, and the continuous
band. The former involves a capstan
around which an anchored metal band
is wrapped. Movement of the head
carriage assembly is controlled by ro-
tating the capstan. In the latter or con-
tinuous band method, an idler roller
and pulley are used with the carriage
attached to the band. The stepper
motor moves the band in small steps
and the attached carriage moves a cal-
culated distance. Typically, the maxi-
mum distance of travel is approxi-
mately 0.8-in.

Bit shift-When a data bit is written, it
is positioned in the exact center of the
bit cell, with either the leading or trail-
ing edge being a clock pulse depending
on the encoding scheme. Because the
encoding schemes vary to accommo-
date higher densities, the bit cells be-
come smaller as the capacity gets
larger. This means that the bits are
closer, crowded together. When read,
the head encounters a change in flux
and a current is developed in the core.
Unfortunately, the current change is
not instantaneous and a finite amount
of time (typically 350 ns) passes before
a peak occurs. While this is going on,
the medium is moving placing another
bit cell under the head, and although
the first transition peaked, it hasn't re-
turned to zero, now the next transition
comes along and is summed with the
first giving a new peak which is shifted
from its proper position. Luckily,
these shifts are predictable and can be
compensated for.

Data Separation-Data coming from
the disk to the controller, is a compos-
ite signal composed of both clock and
data bits. It is the job of the data sepa-
rator to pick the data from the clock
pulses. In single density floppies, the
separation is fairly easy since the data
bit is surrounded by clock bits which
window the data. In double density
the separation isn't as easy, due to the
lack of a constant clock. In a case such
as this, the data separator must first
determine the nominal position of the
clock and data bits then generate a
1-usec clock and data window around
the bit positions. Data separators are
usually analog circuits with a phase-
locked loop to provide the necessary
time domain resolution needed for
high densities.

Droop-This is the difference of signal
as the read/write head moves from the
outer to inner tracks on a floppy disk.
Frequently, at the crossover point, the
signal difference is great enough to
cause a change-droop-in the gener-
ated sine wave. This would, in a sys-
tem employing a peak detector, cause
the detection of an erroneous peak,
and thus an error.

Flexure-A magnetic read/write head
must be mounted in a manner that
makes either contact with medium or
permits accurate flying heights to be
achieved. With floppies, the problem
is easily solved since the head(s) can be
mounted on a rigid arm that will apply
a given amount of force. However,
with Winchester-flying head technol-
ogy, it becomes important that the
head have some freedom in order to
‘fly’. To achieve this, the head is
mounted in a metal holder called a
flexure. The name derives from the
fact that the metal does in fact
flex-move-with the characteristics of
the drive.

Latency-Because a disk is circular,
with each track divided into sectors,
and because the read/write head is sta-
tionary relative to any sector, and be-
cause it takes a certain finite amount
of time for a sector to come under the
head a latency occurs-or time simply
passes before the correct sector is lo-
cated.

Lead-screw-Is a positioner technol-
ogy, whereby a carefully machined
screw-cam, attached to a stepper
motor, is employed to move the head
in several small steps. This method

Lifelines, February 1982



isn't very fast in comparison to a band
design, but is used for accuracy and
for drives where interchangeability is
an important factor.

Pre- and post-compensation-Because
bit shift can be predicted, it is possible
to compensate-correct-for this shift
within a controller. The two methods
that are frequently employed are pre-
compensation, and postcompensa-
tion.

With precompensation, bits are delib-
erately shifted in the direction oppo-
site that of the expected shift during
the write phase of the cycle. Hence so-
called Write precomp.

Postcompensation, on the other hand,
alters the read signal. Each bit is con-
sidered a function of the read channel
frequency response and the signal is

changed to compensate for any bit
shifts.

Rail-is the milled part of a slider that
supports the head assembly on the
flexure, and provides an air bearing
surface to permit accurately con-
trolled flying. Moreover, the name ap-
plies since the effect of the surface is
very similar to that of a railroad track
in that it provides support and gauge.

Seek time-A head mechanism must
travel a finite distance from one track
to another in a 48 tpi drive, the longest
distance is from track O to track 35 a
full stroke of about 0.8-in., for exam-
ple. Typical specifications give the
‘seek time’ in terms of track to track,
and track O to the last track.

Settling time-Once the head moves in-
to the proper track, it must settle both
mechanically and electrically. Since
drive manufacturers are aware of the
unique characteristics of the drive
they make, they take this in account in
the onboard electronics. However,
controller designers must pay atten-
tion to it in order not to expect a data
stream before the head is ready.

Slider-Is the diced substrate form the
read/write head geometries are bound
to. The slider is made up of a block of
silicon, or in the case of thin film
heads, ceramic material which has
been milled to form rails, and either
has cores deposited or glass bonded

Lifelines, Volume I, Number 9

to the ends. Interestingly, this block
‘slides’ into the flexure mount and is
designed to ‘slide’ over the medium.

Track Density-Specifications define
the number of tracks per inch that the
drive exhibits. These numbers can
range from 48- to 600-tpi depending
on the class of the drive. Simply stated
‘track density’ is the number of tracks
per unit length. Notice though, that in
a typical spec the tpi is less than the bpi
by several factors. Remember one is
referencing a physical size governed
by head geometry while the other is
electrical and although partly a func-
tion of the head gap size is magnitudes
greater in density. (See Areal density).

Winchester-May conceivably be the
most misused word in current usage. It
refers to 3340 technology developed
by IBM (circa 1973) that employs a
sealed disk and positioner assembly.
The name came about because it was
first dubbed 3030 technology, orso in-
siders say, and as a consequence the

recording method picked up the mon-
iker of the famous rifle maker.

Gigabytes on the horizon

Although a great deal has happened in
the last several months in storage tech-
nology, expect to see even more as we
get deeper into the eighties.

Reports have it that Control Data al-
ready has the capability of fielding a
200 Gbyte single platter 8-in. optical
disk, and that Optimia, a subsidiary
of Shugart Associates, has similar ca-
pability. Therefore don't be overly
surprised to see early introductions of
high-performance optical systems by
late this year. In addition, you might
keep your eyes open for a newly
formed company in Irvine CA that is
supposedly working on an optical sys-
tem in a 5.25-in. form factor. Even if
the product surfaces this year, it will
more than likely be far too expensive
to plug into your TRS-80.

Attention Dealers!

There are a lot of reasons why you should be carrying
Lifelines/The Software Magazine in your store. To provide
the fullest possible service to your customers, you must
make this unique publication available. It will keep them up
to date on the changing world of software: on updates,
new products, and techniques that will help them use the
packages you sell. Lifelines can back up the guidance
you give your customers, with solid facts on the capabilities
of different products and their suitability to a variety of
situations. Now we can also offer you an index of all back
Issues of Lifelines, opening up a full library of information
for you and your customers.

For information on our dealer package, call (212)
722-1700, or write to Lifelines Dealer Dept., 1651 Third
Ave., New York, N.Y. 10028.




Financial Accounting
On The Computer

Steve Patchen and John Snow

BOSS Financial Accounting System
Lifeboat Associates

1651 Third Ave.

New York, N.Y. 10028

BUSINESSMASTER Accounting
Software

O.E.M. Software

18051 Crenshaw Blvd. Suite F
Torrance, Ca. 90504

In this article we will discuss some of
the important ways in which pack-
aged financial accounting software
differs and in which it might fail or
succeed in meeting the financial ac-
counting needs of the business. As an
aid to this discussion, we will compare
two existing systems which run under
CP/M-80. On the whole, neither of
these accounting systems is necessar-
ily any better or worse than other sys-
tems but they contrast well with each
other on points important for a system
to meet a particular application. Ac-
counting systems are usually very sim-
ilar because there is some standardiza-
tion in accounting practices. This is
due in some part to the pressure of
federal and local tax laws. The influ-
ence of tax requirements is most
strongly felt by small businesses which
might otherwise be run from some
simple check ledger accounting sys-
tem. As a business becomes larger, fi-
nancial planning and budgeting of
money handled by several people be-
come important. The type of business
and the manner in which business is
conducted also have a strong influence
upon the structure of the accounting
system. Thus whether the company is
a corporation or a sole proprietorship;
whether it manages property, manu-
factures and sells products or provides
services makes a difference in the re-
quirements of the accounting soft-
ware.

The structure of the chart of accounts
of the general ledger shows many dif-
ferences. Likewise, the source of fi-
nancial data posted to the ledger can
be other automated subsystems or a
manual transaction entry system. The
volume of transactions conducted by
the business in such areas as payroll,
accounts receivable, cash disburse-

ments and inventory can make a big
difference in the suitability of a partic-
ular software package. Indeed, this
volume may make a subsystem like
payroll, which requires fast turn-
around from inputs to check disburse-
ment, more important than the gen-
eral ledger system itself. The ability to
add additional modules to the system
at a later date may also be important
to a business which already has part of
its accounting automated. This would
require that the data generated by the
first module be accessible to the
module added later; the first module
would have to be able to utilize data
generated by the later module, if it
replaces a manual system previously
used to provide information to the
first module.

As a result we have changed Table III
to list outstanding accounting func-
tional modules and have retained the
other tables used in the database eval-
uation articles.

Distribution and Support

Because financial accounting is closer
to particular business requirements
than the general functions provided
by database systems, the method of
distribution and support become more
important and more closely related to
those individual business needs. The
BOSS is distributed exclusively by
Lifeboat Associates and is available
only in object code to run under
CP/M-80. The BUSINESSMASTER is
distributed in CBASIC source code to
OEMs and distributors, to be sup-
ported locally by them. (Mail order
houses are also distributing it unmodi-
fied at dirt cheap prices but this some-
what defeats the value of it as an OEM
product, because it is difficult for a
novice to implement and use it.) It is
difficult to get good support for partic-
ular business needs from mail order
houses because they tend to spend up-
date and development effort mostly
on those things which affect a lot of
customers. The cost of the support is
cheaper; that is updates usually cost
$25-$30, but there is usually little time

to work on individual requirements
not met well by the current state of the
software. Local support for a product
can usually be tailored more to the in-
dividual business needs, but it costs
more because fewer customers bear
the burden of the cost of the modifica-
tions to the software.

The $2500 price of the BOSS is compa-
rable to Peachtree, Structured Sys-
tems, Graham-Dorian, and others in
that exalted price range. At the other
end of the price scale are TCS, OEM,
and the Osborne packages. These
cheaper packages sell for $100 to $400.
The quality of the documentation and
other cumbersome features are re-
flected in the lower prices, and thus
these systems are not recommended
for the inexperienced computer user.

Functions and Features

The BOSS is a fully developed ac-
counting and financial reporting sys-
tem. This software requires little com-
puter knowledge and only rudimen-
tary bookkeeping skills. You do have
to know the difference between debits
and credits, but the BOSS even has a
refresher section to clarify their use.
The BUSINESSMASTER uses only
+’s and —'s during entry but shows
them as debits and credits on screen
forms and reports. The BOSS has ac-
counts receivable and accounts pay-
able modules with several reports as-
sociated with each, including the abil-
ity to print checks. The receivables
cannot produce an invoice and the
payables cannot produce a purchase
order, however. BUSINESSMASTER
is capable of producing invoices, pur-
chase orders, and checks. It does not
print statements. Both systems pro-
vide depreciation schedule facilities.
The BOSS also can produce loan
amortization schedules.

There is one major functional flaw in
the BOSS: It doesn't contain a payroll
module. Balcones is working on one
but the current system is incomplete
without it. Any small businessman
has to do three essential things: deliver
his product, hustle his money and

Lifelines, February 1982



make payroll on time. The BOSS can
help him keep track of his finances but
it cannot help get the payroll out. If
you only have a couple employees or
if you are using a service bureau for
payroll currently then you can prob-
ably live with this shortcoming. The
BUSINESSMASTER has a payroll
module set up for federal and Califor-
nia state taxes. [t must be modified for
other states.

The BOSS general ledger will handle
900 accounts. The account numbers
are 3 digit integers. Three digits are
sufficient for most applications. (A
notable exception occurs when the
business uses a large inventory system
requiring ledger entries for many in-
ventory categories. It is usually desir-
able to use the same numbering in
both the ledger and the inventory.)
The accounts payables and receiv-
ables can handle 9000 vendors/
customers. You can have 900 depart-
ments, each cost centered and 900 ca-
tegories of products or salesmen. You
can also set up any number of compa-
nies. If you have an accounting firm
this program will handle all of your
accounts. It will give you a bewilder-
ing array of financial reports, such as
liquidity, return on equity, return on
total assets, etc., a very impressive
shopping list. All report selection is
menu driven.

The BUSINESSMASTER general led-
ger will handle 9999999900 accounts.
The account numbers are 10 digit in-
tegers. The customers and vendors
also have 10 digit account numbers.
There is no departmentalization ex-
cept by account number variation.
Different companies can be set up by
making up separate data diskettes for
each. The number of reports available
is limited compared to the BOSS.

The BOSS can use NEBS forms for
checks and statements. This is
thoughtful. It can save time in design-
ing forms. The reports are available
anytime; closing procedures are not
necessary before printing a report.
Summary reports can be run for indi-
vidual departments within a com-
pany. This makes performance re-
views convenient. Customer files can
be brought up on screen at any time
for reference or corrections. Thus you
have access for phone conferences
with customers. You can refer to rec-
ords by ID codes or alphabetically and
can scan forward and backward from

Lifelines, Volume I, Number 9

TABLE 1
Facts & Figures

Package or Version name:
(Name of the versions reviewed)

The BOSS Financial Accounting System Version 1.08

The Businessmaster Accounting Software (no version given)

Price:
(List price or Lifeboat price)

The BOSS lists at $2495.00 from Lifeboat, the exclusive
distributor.

The Businessmaster is sold by O.E.M. Software for $375 com-
plete with source code and distribution rights. Mail order prices
for end users vary from $100 to $250.

Systems available for:
(Computer or operating systems on which the package can operate.)

Both packages run under CP/M-80.

The BOSS provides its own runtime root and is written in
Microsoft compiler BASIC.

The Businessmaster requires CBASIC.

Memory requirements:
(RAM memory required.)

The BOSS requires a 54k system or more.
The BUSINESSMASTER will run on a 48k system.

Printer Requirements:

BOSS requires a 132 column printer but can use compressed
printing on a narrower printer.

BUSINESSMASTER uses less than 80 columns for most reports.
But 132 columns is required for the payroll ledger and the inven-
tory reports.

Diskette capacity required:
(Minimum amount and amount required for for each of the
test applications.)
BOSS requires > = 200k drives, two or more

BUSINESSMASTER will run on 160k drives after it is compiled.

(continued next page)

9



10

Utility programs provided:

TABLE I (continued)

(Programs provided other than those required for routine use
of the package.)

BOSS provides a backup utility.

Portability:

(How difficult is it to move the application and/or the data
to another package or computer.)

BOSS can be moved to other Z80 or 8080 CP/M-80 systems.

BUSINESSMASTER can be moved to any machine which can run
CBASIC. i.e. 8086 cpu'’s also.

User skill level required:

(i.e., novice, amateur or professional skill level required to use and/or
implement each application using the package.)

The BOSS can be setup and used by a novice.

The BUSINESSMASTER should be setup by a professional and
training should be provided for users.

System upgrade policy:

(Is an upgrade subscription available? Cost? Who provides?
If no subscription available, usual cost of upgrades.)

BOSS updates are available only from Lifeboat Associates.

BUSINESSMASTER requires local support.

the current record with simple key-
board control characters. The amorti-
zation routine requires all four factors
of principal, interest rate, duration of
the loan, and the amount of the pay-
ment. Most other systems only require
three of the four and compute the
missing one.

The BUSINESSMASTER uses NEBS
forms only for the checks. It has a
mailing system which utilizes the cus-
tomer file. This is convenient for
many businesses. There is a special
utility to clear the payroll file amounts
at the beginning of a new year; it must
be run outside the menu system. There
is a similar routine for the general led-
ger, allowing the reposting of the jour-
nals as a check or after data damage of
some sorts. The essential reports for

each module are provided, but there
are not any of the useful financial
management ratios and earnings re-
ports such as those provided by the
BOSS. Only one minor bug was un-
covered during use of this system.
Some reports failed to turn the printer
off if the report happened to end ex-
actly at the last printable line on the

page.

A three level security system is in-
cluded in the BOSS to restrict sensitive
parts of the system to authorized per-
sonnel. BOSS also does an integrity
check every time it loads a program
module. This eliminates the possibil-
ity of a bad program module scrab-
bling data. No security is provided for
the BUSINESSMASTER system. Thus
data integrity is more threatened by
operator error and equipment failure.

Setup and Use

Both systems run under CP/M-80.
The BOSS requires 48k in the transient
program area, i.e. usually a 54k sys-
tem. The BUSINESSMASTER will
run under a 48k system. You will need
a 132-column printer for the BOSS or
one with compressed print like the Ep-
son MX80. During installation you se-
lect the compressed print option so
that the reports will fit in 8 1/2 inches
of width. A minor modification is re-
quired if you have a Centronics
printer. The BUSINESSMASTER
prints most of its reports on 8 1/2 inch
paper. The exceptions are the payroll
register and the inventory reports.
You need at least 200k on the system

device for the BOSS. BUSINESS-
MASTER requires less to run but must

then be compiled on a different
machine.

BOSS performs as advertised. It won't
scare your secretary or you either.
After installation, which is explained
step-by-step, the system is discussed
menu-by-menu from the orientation
through day-to-day use. You do have
to spend some time acquainting your-
self with the organization of the mate-
rial in the manual and with the organi-
zation of the system, but this is not dif-
ficult. You should run through the tu-
torial and read the special sections on
how to speed up data entry and how to
print reports. The language in the
manual is business oriented. If you are
installing the system yourself you will
need to be familiar with CP/M-80 and
PIP in order to transfer files to the disk
configuration you desire. The step-by-
step instructions are clear to the user
who has no knowledge of computer
jargon.

Setup and operation of the BUSI-
NESSMASTER are discussed in the
manual. You are given guides as to
which data files have to be on which
diskettes and an example is provided
to demonstrate setting up a new chart
of accounts. A field called a TAG is
used by the chart of accounts and
some other modules. It is discussed a
little in a few places in the manual. But
the explanation is far from clear. It
took a considerable amount of time
for me to determine the exact require-
ments for the use of the TAG in the
various files.

The terminal installation for the BOSS
is easy for most common terminals.

Lifelines, February 1982



The installation procedure for the
BUSINESSMASTER requires changes
to a CBASIC source file which is in-
cluded in most files during compila-
tion. This could not be done by some-
one not familiar with CBASIC. This
also means that a compiled version of
the system can only be run on other
systems with the same terminal.

Documentation

The BOSS manual is excellent. It is the
ultimate in detailed explanation.
There is a comprehensive and easy to
follow installation section, a good tu-
torial section, and illustrations for
each type of entry. There are special
help sections; one for problems which
might be encountered, one for speed-
ing up data entry and one for review-
ing basic bookkeeping fundamentals.
Unfortunately there is no index, even
though there is a tabbed divider for

one. The reading might seem dull, but
once you get through it far enough to
grasp the operation of the BOSS, it
really shines. There is an obvious
mistake in one of the examples for the
debit/credit tutorial section. A $1000
charitable donation is proposed for a
sole proprietor; this is not only im-
practical, it is illegal. An individual
can make such a contribution but it
cannot be taken as a business expense.

The BUSINESSMASTER manual is
bad. The data file contents and the
menus are discussed and some of the
setup requirements are covered, but
the manual is full of holes. These ex-
planations are far from clear, espe-
cially to someone not familiar with
computer structures and jargon. It
would be impossible for a novice to
extract the information he would need
to get the system running. This system
definitely requires technical support
and local training. There seems to be
some leeway in laying out the data

TABLE II:
Qualitative Factors Rating*
BOSS MASTER

Documentation

organization for learning 7 3

organization for reference 5 3

readability 7 2

includes all needed information 6 1
Ease of use

initial start up 7 4

conversion of external data 1 4

application implementation 4 6

operator use 7 -+
Error recovery

from input error 7 4

restart from interruption 7 4

from data media damage 7 4
Support

for initial start up 6 *

for system improvement 4 *

*Ratings in this table will be in a 1-7 scale except where local support is required.

where:

= clearly unacceptable for normal use
4 = good enough to serve for most situations
= excellent, powerful, or very easy depending on the category

Lifelines, Volume I, Number 9

files because some requirements are
stated, though the reasons for them
are not. It is not at all clear from the
manual, however, what variations are
possible.

Backup, Error Recovery and Data
Organization

Another good feature of the BOSS is
that it opens files only during the
momentary write time. If you lose
power or the hardware fails, you only
lose that single transaction. All the
other records are secure on the mag-
netic media. The BOSS also has an in-
tegral backup system. That is, it
doesn't require the use of PIP. The op-
erator runs it by menu control and by
specifying the drive to place the
backup files on. The BOSS is also able
to quickly look up the titles for ac-
count numbers and the customers and
vendors by their numbers during
transaction entry without noticeably
slowing down entry because it uses
B-Tree indices. (See the discussion of
indices in the Dec 81 issue, p15. and
the corrections to that article in this
issue.)

Review Summary

The BOSS is an excellent choice for the
novice computer user if he does not re-
quire complete financial accounting.
The BUSINESSMASTER is a good
choice if a more complete financial
system is required and local support is
available. The local support should in-
clude experience with CBASIC and fa-
miliarity with state and city tax re-
quirements.

John Snow is an accountant and busi-
ness consultant. He has run his own
firm for sixteen years. In 1980 he es-
tablished Small Business Computers
in the Detroit area.

Steve Patchen is a data engineer who
provides hardware and software sup-
port for small business computer users
in Southeastern Michigan. He has run
LAB Data Systems in Pontiac, Mich.
for 4 years.

Please send all correspondence to

Steve Patchen in care of Lifelines, 1651
Third Ave., New York, N.Y. 10028.

(see next page for TABLE III)

11



12

FREELANCE PROGRAMMER WANTED

dBASE

Ohm Acoustics Corp.
241 Taaffe Place, Brooklyn, NY 11205 (212) 783-1111
Attn: John Strohbeen

TABLE III
Data Management Capabilities
& Accounting Functions

BOSS MASTER

A.Underlying Data Structures

1. indexing YES NO
2. files accessible by other programs NO YES
without professional help all ASCII

B. Functions Provided

1. general ledger YES YES
a. ledger trial balance YES YES
b. ledger summaries YES ONE
c. income statement YES ONE
d. balance sheet YES YES
e. comparative reports YES ONE
2. payroll NO YES
3. accounts receivable YES YES
a. invoices NO YES
b. statements YES NO
4. accounts payable YES YES
a. purchase orders NO YES
b. check printing YES YES
5. inventory NO YES
6. mailing system & labels NO YES
7. financial calculations
a. amortization YES NO
b. depreciation YES YES

The Undocumented
“CALL” Instruction
in dBASE II Version
2.02

In the December issue of Lifelines Carl
Warren mentioned a “call” instruction
in dBASE which would allow interfac-
ing dBASE “CMD" files with assembly
language routines. George Tate of
Ashton-Tate was kind enough to sup-
ply details of how to use this feature.
An example follows:

store “I am a subroutine” to mvar
call mvar

On executing these lines, dBASE vec-
tors to location A400h with the HL
register containing the address of the
first byte of the memory variable. This
byte contains the length of the vari-
able, and the bytes following it con-
tain the variable itself. You may use all
registers and alter any memory loca-
tion above a400h, returning with a
“ret” instruction. The only time
dBASE will use this memory area is
during a SORT, when it will employ
a400h up to BDOS to sort in memory.
The subroutines to be called must be
loaded into memory before dBASE is
brought in.

The new version of dBASE, now in
beta testing, will have several exten-
sions to allow subroutine calls, e.g.
“SET CALL TO CALLADDRESS”,
PEEK, and POKE.

Renew

Did your subscription begin in March
19817 If it did, you've probably re-
ceived two reminders from us and you
should know that renewal time is here.
If you don't renew now, you'll almost
surely miss our big March issue, which
will include some exciting reviews and
product information.

Don'’t miss out on your sole source of
information on what'’s really happen-
ing with CP/M-80 and related soft-
ware. Call or write the Lifelines
Subscription Dept., 1651 Third Ave.,
New York, N.Y. 10028. Telephone:
(212) 722-1700.

Lifelines, February 1982



8080 Assembler Programming Tutorial:
Control of the Execution Sequence  v..wia

All the instructions previously used
were executed sequentially. In this sec-
tion of the tutorial, I'll cover the in-
structions which allow changing the
execution sequence. Some, such as
JMP, CALL, and RET, are uncondi-

tional. Others are conditional.

To make the examples more meaning-
ful, I will cover the conditional exam-
ples after going into the arithmetic and
logical instructions.

Let's start with the simplest instruction
for altering the execution sequence:

JMP

The JMP instructions tells execution to
continue at a specific place in the pro-
gram, rather than continuing sequen-
tially. The format of the J]MP com-
mand is:

JMP address

Typically, “address” is a LABEL in the
program.

The following example shows the use
of the JMP instruction: to repeat some
process “forever”.
H
;program example for use of JMP
LXI H,XYZ ;point hl fo XYZ
LOOP MOV A,M ;get character
. ;do something
INX H
JMP  LOOP

;to next char
;loop forever

Are there alternatives to the JMP in-
struction to change the execution se-
quence of a program unconditionally?
Only one way:

PCHL
“Big” computers typically have a way
to “jump to the address in a register”.
The 8080 shares this function in only
one small way: the ability to “jump” to

Lifelines, Volume II, Number 9

the address in the HL register.

It accomplishes this function by “mov-
ing” HL to the program counter (PC).
Thus, the operation code: PCHL. It
stands for “Program Counter, from H
and L”. It has no operands, nor condi-
tional variations.

CONDITIONAL JMPs

JMP transfers control uncondition-
ally. To JMP only if some condition is
met, you use the conditional JMP in-
structions. The conditions tested are
the bits of the PSW as we discussed
earlier. The conditions which may be
tested, and their abbreviations are as
follows:

Z  zero

NZ not zero

C  carry set

NC carry not set

M  minus (negative) result
P zero or positive result
PE even parity result

PO odd parity result

The instructions for these conditional
JMPs are formed by the letter J, fol-
lowed by the 1 or 2 letter abbreviation
shown. Note there might be some sur-
prises here: for example, it is easy to
remember that “P” means positive,
but not as easy to remember that “pos-
itive” in the 8080, included zero! Thus,
a JP (JUMP Positive) instruction will
jump on positive, or zero. With these
conditional JMP instructions, you can
perform “looping” which is like the fa-
miliar FOR - NEXT loop of BASIC.
For example, if you want to do some-
thing 10 times:

1-put the value 10 in some register;

2-perform the operation;

3-decrement the register;

4-"test” to see if the register is 0,
with a JNZ instruction.

This is possible because in step 3, you
code a DCR which sets the zero bit in
the PSW if the register is decremented
to 0. Then, the JNZ (jump if not zero)
can test the zero condition:

MVI B,10 ;INITIALIZE COUNT
LOOP .
. ;SOME INSTRUCT IONS
DCR B ;DECR. LOOP COUNT
JNZ LOOP ;LOOP IF MORE

Note how the B register was used for
the loop count.

An aside on good versus bad program
commenting: note my use of com-
ments. The comments say “why” I
coded the instruction. If on the “DCR
B” instruction, I had put a comment
“;DECREMENT B”, I would not be
telling you why I was doing the in-
struction. “An assembler program’s
comments should explain the logic of
the program, not explain the instruc-
tion set”. An obvious exception would
be programs or program fragments
specifically intended to teach instruc-
tions.

With the JMP and conditional JMP in-
structions, you can see how the flow
of control in a program may be
changed.

Another major facility available re-
lates to going to a program, and being
able to return from it no matter where
it was called from. Read on...

CALL and RET

Let's say I wrote a routine which mul-
tiplies two numbers. If I want to exe-
cute that “subroutine” from several
places in our program, then using JMP
will not work. It would be nice to have
a means to go to the routine, and re-
turn to where we came from. BASIC
uses GOSUB to go to a subroutine,
and RETURN to come back.

The CALL instruction is like a JMP,
except that the address of the instruc-
tion following the JMP is placed on the

(continued next page)

13



stack. Thusif I am at address 100, with
the stack pointing to 300, and I issue a
call to address 200, the following will
happen:

1-The address of the instruction
following the CALL (i.e. 103) will
be “pushed” onto the stack.

2-The program counter will be
changed to 200, therefore execution
continues at address 200. A JMP
200H would also go to 200, but it
wouldn't result in the next instruc-
tion’s address being placed on the
stack.

When the subroutine at 200 is fin-
ished, it should go back to 103H. The
RET instruction has that function.
RET “pops” the stack into the program
counter. Thus execution resumes at
103H.

The program now looks like this: I
added addresses to the left margin, al-
though they wouldn't normally ap-
pear in any program you write until
the program was run through the “as-
sembler” which converts your instruc-
tions into machine language.

;ASSUME THE STACK IS 300H

100 CALL MULT
103 .

;RETURN HERE

.
.
b

sMULTIPLY SUBROUT INE

’
200 MULT .

2XX RET ;RETURN

; TO CALLER

In typical use, the CALL and RET in-
structions may be “nested”, i.e. one
routine can call a second, and it, in
turn, can call a third. We'll see an ex-
ample shortly, but first:

RST

Think of RST (Restart) as a very spe-
cial CALL instruction. Like CALL, the
address of the instruction following
the RST is placed on the stack. How-
ever, RST may only go to one of 8 fix-
ed addresses in memory:

14

This instr calls:
RST 0 0 (OOH)
RST 1 8 (08H)
RST 2 16 (10H)
RST 3 24 (18H)
RST 4 32 (20H)
RST 5 40 (28H)
RST 6 48 (30H)
RST 7 56 (38H)

RST is generally thought of as an “in-
terrupt related” instruction. More
details on this in a later tutorial. In
programming an 8080, you are most
likely to encounter RST when testing
programs under DDT (Dynamic De-
bugging Tool) or SID (Symbolic In-
struction Debugging). Both of these
use the RST 7 instruction to do func-
tions like tracing and breakpointing.
To do so, they place a JMP at location
38H. You can take advantage of this
by coding RST 7 when you want to re-
turn to DDT or SID after testing your
program. There will be more details
on program debugging in future parts
of the tutorial.

Let’s return for a minute to the PCHL
instruction. Since it is effectively a
JMP to the address in HL, there might
be times you want to, instead, CALL
the address in HL (but admittedly, not
very often).

Here is how you would do that: you
have to use the CALL instruction —
there is no getting away from it.
However, what it in turn calls, is a
PCHL instruction. Thus, the return
address is set up by the CALL, but
control transfers in a hop-scotch form,
first to the PCHL instruction, then to
the address contained in HL. The pro-
gram to CALL the address in HL
would now look like:

CALL GHL

RET
GHL PCHL

The CALL GHL puts the address of the
instruction following CALL on the
stack, and transfers to the label GHL.
GHL then executes the PCHL, and
branches to the address in HL.

I chose the name “GHL”, and not
“PCHL" because the CP/M assembler

ASM does not allow an operation
code (PCHL for example) as a label. In
later sections of the tutorial, I'll show
use of PCHL in branching to addresses
within CP/M, so as to work on virtu-
ally any system.

CONDITIONAL CALL and RETURN

Just as there were conditional varia-
tions of the JMP instruction, there are
conditional variations of the CALL
and RET instruction. Conditional
CALL instructions are formed by the
letter C followed by the condition
abbreviation, and conditional
RETurn instructions by the letter R
followed by the the condition abbrevi-
ation.

SUMMARY

Here is a table in which I have spelled
out all of the instructions relating to
control of the execution sequence:

(unconditional)
CHLand JMP CALL RET
(Conditional)
zero JZ CZ RZ
not zero INZ CNZ RNZ
carry JC GCe RC

nocarry JNC CNC
minus ™M M RM
positive/0 JP CP RP
parity even JPE CPE. . .#RBE
parity odd JPO CPO RPO

SAMPLE PROGRAM

Let’s put this all together into a partial
program: the program will print a
message. It has two subroutines,
PRTM to print the message, and
PRTC which prints a single character.
(The short labels are a result of squeez-
ing the programs into these narrow
columns).

In order to avoid instructions which
haven't been covered, I will assume
that the message has a length byte in
front of it. It tells how many charac-
ters to print. Later on, I'll show the
more common technique of storing a
special character at the end of the
message, so you don't have to know
how long it is in advance. Here is the
program:

Lifelines, February 1982



LXl H,MSG ;point to msg
CALL PRTM ;print the msg
;define the msg,
H
MSG DB 18 ;msg length
DB 'This is a message'
DB ODH,O0AH ;CR/LF
H
;sMSG print subroutine
H
PRTM MOV B,M
PRTL MOV A,M

;GET LENGTH
;GET MSG CHAR

CALL PRTC ;PRINT THE CHAR
INX H ;TO NEXT CHAR
DCR B ;COUNT DOWN
JNZ PRTL ;LOOP TILL DONE.
RET ;RETURN

PRTC .

; (We'll discuss the output in-

; structions needed by this
; routine, at a later time)
; Note that this program must
; preserve the BC register which
; has the count in ite.
RET ;RETURN
;  FROM PRTC

CONTROL OF THE
EXECUTION SEQUENCE

SECTION 2
LOGICAL AND COMPARE
INSTRUCTIONS

JMP, CALL, and RET control the exe-
cution sequence. Their conditional
variations give real “power to pro-
gramming”.

In this section, I'll cover the “logical
and compare” instructions, most of
which relate directly to conditional ex-
ecution: they are the instructions that
set the conditions.

THE LOGICAL INSTRUCTIONS

The logical operations available on an
8080 support ANDing, ORing, EX-
CLUSIVE ORing, COMPLEMENT-
ing, and bit SHIFTING. Recall from
the TERMS section of the tutorial,
that when you AND two bits together,
the resulting bit is one only if both of

Lifelines, Volume I, Number 9

the original bits were one.

When you OR two bits together, the

result is a one bit if EITHER of the
original bits were one.

When you EXCLUSIVE-OR two bits
together, the result is a one bit if
ONLY 1 of the original bits were one,
the other zero. This is similar to OR,
but excludes the case of where both
bits were one.

This might be easier to follow using
the following table. Since there are
only 4 possible combinations of 2 bits
(both on, both off, first on second off,
and first off, second on), the table will
use 4 bit numbers, allowing for all pos-
sible combinations:

EXCLU-
AND OR SIVE-OR
1100 1100 1100
1010 10510 10710
1000 1110 0110

The most commonly used operation is
AND. Why? Because the AND opera-
tion has the property of “turning off”
unwanted bits in a byte, and therefore
“isolating” only the wanted bit or bits.

For example, when you are testing to
see if a key has been pressed on your
keyboard, you can use the IN instruc-
tion to input an 8-bit byte. In thisbyte,
usually called the STATUS byte, a sin-
gle bit will go either on, or off, de-
pending upon the type of keyboard in-
terface, indicating the character is
ready. Suppose your keyboard has the
bit in position 40H (Hexadecimal) go
on when a key has been pressed. In bi-
nary notation:

0x000000
the “x” bit goes on.

The other bits (shown as 0 above) may
also be used to indicate something. For
example, another bit could show that
an output device, say a display termi-
nal, isready to receive another charac-
ter. Thus we want to isolate just the
40H bit. If we input this status, AND it
with 40H, we will zero all the bits ex-
cept the 40H one. The zero bit in the
PSW will then reflect the state of the
40H bit. Thus, we can do a conditional
jump (JZ, jump zero, or JNZ, jump not
zero) to test if the bit is off or on.

Here's an example. “B” is the bit we

want to test, and “X" are the bits we
don't care about:

Input Port: XBXXXXXX
“AND”with: 01 000O0O0O0
Results in: 0BOOOOOO

Thus “ANDing” “isolated” just the bit
we care about.

Let’s look at the logical instructions
themselves. First, the immediate in-
structions.

ANI, ORI, and XRI

These instructions (AND immediate,
OR immediate, and EXCLUSIVE OR
immediate), combine the 8 bit value in
the accumulator (A-register) with an 8
bit value from the instruction itself.
The result is placed back in the accu-
mulator.

Typically the value in the instruction
is coded as a hexadecimal value, for
example:

ANI 40H

In general, the format of the instruc-
tion is:

ANI value
ORI value
XRI  value

You will often want to set up a specific
value advance, via an EQU (equate)
instruction. Thus:

MASK EQU  40H

s INPUT STATUS

ANI  MASK

The ANI MASK is actually an ANI
40H, but it is more readily changed if
the value of MASK is used in several
places, or if you don’t want people to
have to “dig” for it in your program.

ANA, ORA, and XRA

These 3 instructions, AND with ac-
cumulator, OR with accumulator,
and EXCLUSIVE OR with accumula-
tor, perform the same as the immedi-
ate logical instructions. However, the
second part of the data comes from

(continued next page)

15



one of the registers or from memory,
instead of from “immediate data” in
the instruction itself. The instruction
format is:

ANA reg
ORA reg
XRA reg

where “reg”isoneof A, B, C,D, E, H,
L or M for memory addressed by HL.

Thus, if you want to AND the accu-
mulator with a 40H, you could do it in
either of 2 ways: ANI 40H, or you
could have put 40H in some other reg-
ister, say B, via MVI B,40H — then
you could:
ANA B

This technique looks more compli-
cated, but it executes just a little faster,
and if you are going to be in a loop
testing for a bit to come on from some
device attached to your computer,
you might want to be able to do some-
thing very quickly when a bit comes
on.

If microseconds (millionths of a sec-
ond) count, the ANA with a value in a
register might be better. Another rea-
son for using ANA over ANI occurs if
the value is not known at the time the
program is assembled. It would be
loaded into the register at execution
time after being calculated. You could
have stored a value into the second
byte of an immediate instruction to
change it's value. Why? because the
listing might say “ANI 40H"” but by
storing into the instruction, it might be
“ANI 20H" at execution time. Makes
debugging harder, and leaves room
for error when modifying the program
later. These instructions also have
some subtle and interesting side ef-
fects. Specifically:
ORA A
or
ANA A

does not change the contents of the A
register (because ORing or ANDing
something with itself leaves it un-
changed). However there are two re-
sults: First, the Program Status Word
(PSW) bits are set to the value, and se-
cond, the carry bit is set off.

Why is it useful that the PSW bits are
set? Well, suppose you are scanning
through a series of bytes (say an ASCII
message) and wanting to test for the
end of the string of characters. An
easy way would be to put a byte of 0 at
the end of the message. It is logical to
code:

16

MOV A,M sget a char.

CPI 0 sls 02
JNZ  LOOP sesn0, loop
RET jeeyes, ret

However, you could replace the “CPI
0" which is a 2 byte instruction, with
“ORA A" which is a 1 byte instruc-
tion. JNZ LOORP still stays, since the
zero indicator will be set properly in
either case. (Details on ORI are com-
ing soon).

As to ANA A and ORA A setting off
the carry bit: the carry bit is some-
times used as a “flag” indicating suc-
cess or failure of a routine. For exam-
ple, after a CALL, you could do a JC
ERROR meaning the routine called
had an error, and set carry.

A simple instruction, STC, is used to
set carry. There is no corresponding
instruction specifically designed to
turn off carry. However, using:
ORA A
or

ANA A

turns off carry. My preference is ORA
A, but both have exactly the same ef-
fect.

XRA A is also interesting, in that it
zeros the accumulator. This is faster,
and takes one less byte of instruction
than “MVI A,0”. Another difference,
which you might want to make use of
some time, is that XRA A turns off
carry, while MVI A,0 doesn’t change
it.

CMA

CMA (complement accumulator)
“flips” each bit in A. For example, the
contents of the A register:

Before CMA: 10110101
After CMA:01001010

Note that this DOES NOT make A the
“negative” of what it was. For exam-
ple:

Before CMA: 00000010= 2
After CMA:11111101 = -3

You can see that 2, via CMA, becomes
—3, not —2. If you do want to make
the value in a negative, youmust add 1
after CMA. The easiest way is:

CMA ;flip bits in A
INR A ;then make it
negative

The result of these two instructions is
called the “two’s complement” of the
original number. There is also a name
for the result after just the CMA:
“ones- complement”. To review: the
ones-complement of a number is ob-
tained by simply flipping the bits. The
twos-complement is formed by flip-
ping the bits, then adding one.

The following instructions could be
considered to be part of the “logical in-
structions” in that they deal with the
BITS of A.

RAL RAR RLC RRC

These 4 instructions ROTATE the bits
in A. Those with L rotate left, those
with R rotate right. For example, if the
accumulator contains:

00001111

and we execute a RRC instruction, it
will now contain:

17010./650.1.1*1

The rightmost bit will also be copied
into the carry bit, i.e. it will now be a
1. More generally, RRC and RLC ro-
tate the 8 bits of the accumulator, and
copy the bit which “rotated around”
into the carry bit.

RAR and RAL also rotate the accumu-
lator, but they treat it as a 9 bit value.
The 9th bit is the carry bit. Thus if
carry is on, and A contains:

00001111
then a RAR instruction makes A:
10000111
and will result in the rightmost 1 bit
being shifted into carry, leaving it on.
Pictorially:
RAR

lcl = |7l6lslal3|2]1]0]

; +

Lifelines, February 1982




RAL

lcl < |7l6lslal3]2]1]0]

T +

RRC
lcl  |7lelslalal2l1lo]
RLC

lcl  I7lelslalal2]1]o]
L] y

COMPARE INSTRUCTIONS

Single comparison can always be done
using subtraction. For example:

SUl TR

will SUbtract Immediate, an ASCII 'R’
from the accumulator. If the ac-
cumulator contained an R’, the zero
indicator will be set, so you can “JZ
GOTR" i.e. jump to “GOTR" if the
value was an R. However, we have
CHANGED the value in A, so we can-
not then:

SuUlr ‘G

to see if it might have been a G. It
would be nice to have a subtract
instruction that doesn’t change the
value. Read on...

CPI

CPI does a “compare immediate” of
the accumulator, with an immediate
8-bit value. For example:
EPI" R’

compares the accumulator with an
ASCII R, setting the zero indicator
(allowing “JZ label”) if the value was
R. Unlike the SUI instruction, the
value is A IS NOT CHANGED by the
CPI instruction. This permits:

CPL “"'R? s1s It Re
JZ GOTR ;yes

GRI = EY jee0r G?
JZ GOTG ;yes

etfc.

Lifelines, Volume II, Number 9

CMP

The CMP (compare) instruction also
compares 8 bits in A, but to a register
rather than immediate data. The for-
mat of the instruction is:

CMP reg

where “reg”isoneof A, B,C,D,E, H,
L or M for memory as pointed to by
HL:

ANDing and ORing
“like a high level language”

I have covered the control of the ex-
ecution sequence, and the logical and
comparison instructions that are used
to set the conditions. I would now like
to relate these to, say BASIC usage of
AND and OR. Consider the BASIC
program fragment:

30 IF X=2 OR X=3 THEN GOTO 50
Do you know what goes on “under the
covers” in BASIC, when it executes
these instructions? The popular Mi-
crosoft BASIC first computes the re-
sult of “X=5", then the result of
“X=2". It then “OR”s these two
results, and makes the “THEN
GOTO" decision based upon the re-
sults. You can try it by trying “pieces”
of the line, and observing the results:

A>0BASIC
33273 Bytes free
BASIC Rev. 4.51

[CP/M Versionl
Copyright 1977 (C) by Microsoft
Ok
LET X=2
Ok
PRINT X=3
0
Ok
LET X=3
Ok
PRINT X=3
-1
Ok

“Under the covers”, MBASIC is work-
ing with “bits”. Printing “X=3", when
X was not equal to 3, showed 0. The
result when X was equal to 3, was
“—1". The value of —1 is actually
“FFFF”, or “all bits on”. You can see
for yourself:

PRINT HEX$(X=3)
FFFF
ok

Let’s get back to assembler! (...and try
something similar). Suppose you want
to jump to some label if the accumu-
lator contains either 2 or 3. Youwould
not likely perform the same logic as
BASIC did. As a matter of fact, you
don't even use any “or” instructions.
Instead, you do the “or” in your head,
as part of the logic of designing the
program. What? Well, let an example
show:

CPlI 2 ;1S A=22
JZ XXX ; YES, JMP TO XXX
CPI 3 ;1S A=32
JZ XXX ; YES, JMP TO XXX

There are alternatives, such as by put-
ting the routine XXX next in line in the
program:

CPl 2 ;1S A=2?
JZ XXX L5 2YES, JIMP TO! XXX
CPlI 3 ;1S A=3?
JNZ  NOTX ;NO, SKIP XXX
XXX:
NOTX:

As you can see, although we wanted
to “jump to xxx if A was 2 or 3", no
“OR"-type instruction was used.

Let’s code that yet another way. This
technique will be useful for comparing
a “range” of values. For example, it
can test if A is any value from 2to 8, in
the same number of instructions as to
test it for the values 2 or 3.

I will use CPI. It is easy to use CPI to
test if a value is equal to, or not equal
to, some value. I showed this in the
previous program example, using JZ
and JNZ. Its time to resort to “gim-
micks” - a way to remember some-
thing that can’t be “figured out” each
time you need it.

The “gimmick”is: “C.A.L". It refers to
the state of the PSW carry bit, after
doing a compare instruction. C.A.L.
stands for “Carry if Accumulator is
Lower”.

An example:
MVI A2
CPI%2

The PSW “zero” indicator will be set.
However, “carry” will not be. In the
case of:

MVI A2
CPI 3
(continued next page)

17



“carry” will be set. “C.A.L.”, or
“Carry if Accumulator is Lower” —
and the accumulator, (2) is lower than
what is being compared, the immedi-
ate 3. Back to comparing a range of
values: again, a program to test if the
accumulator contains a 2 or 3:

CPI 2 ;1S A < 22
JC  NOTX ; YES, SKIP XXX
CPI 4 ;1S A < 42
JNC NOTX
XXX:
NOTX:

To compare if A is any value between
2 and 8, just change the “CPI 4" to a
“CPI 9”. As long as I am covering al-
ternatives, there are even more. The
DCR instruction can be used to test for
small values, since decrementing a
register to zero sets the PSW “zero”
flag:

DCR A ;SET ZERO IF..
DCR A ;eeA WAS 2
JZ XXX ;JMP IF IT WAS 2
DCR A ;SET O IF A WAS 3
JNZ NOTX ;SKIP IF NOT 3
XXX: .
NOTX: .

A few last thoughts on the use of com-
pare instructions, carry, and “C.A.L".
First, let me relate it back to BASIC
programming again. If you use CPI or
CMP, then JC, consider the parallel
with the BASIC comparison operator
eiils
30 IF X < 9 THEN GOTO 50

and in assembler:

EPRI =9
JC XXX

In BASIC, it is easy to make more
complex comparisons, such as:

30IF X < = 9THEN GOTO 50
To “translate” this directly into
assembler, requires:

CPI 9
JC XXX
JZ XXX

Why? Because simply, there is no di-
rect translation for the “less than or
equal to” operator. A simple alterna-
tive would be to change the technique,
but not the logic:

CPI 10
JC XXX

18

since “less than 10" is the same as “less
than or equal to 9”.

A second thought, combines the fact
that carry is set on a “less than” com-
parison, with the fact that carry is a
useful bit to use to indicate success or
failure of some subroutine. A typical
subroutine might be one to test if the
accumulator contains an ASCII print-
able digit, 0 to 9, returning carry if the
digit is not. I'll have to introduce one
trivial instruction to do so:

CMC

CMC means “complement carry” and
does nothing more or less than that.
Here is a use:
;ROUTINE TO TEST IF THE ACC
;CONTAINS AN ASCII DIGIT,
sRETURNING CARRY |F NOT.
CKO9 CPI 10! ;<'0' SETS CARRY

RC sRET IF < 'O

CPl '9'+1 ;'9' OR LESS

;  SETS CARRY

CMC ;FLIP CARRY

RET ;RETURN, WITH
;5 CARRY SET IF
3 '0'—'9'.

This example shows very well why I
like assembler programming. The rou-
tine takes 7 bytes, and executes, on a
4MHz system, in about 3 to 7 mil-
lionths of a second (depending upon
whether the RC is executed, or control
passes on to the last 3 instructions.

That wraps up another part of the
tutorial. Like to keep score? There are
7 instructions to go, in the “Input/
Output and “Other Instructions” sec-
tions of the tutorial. Then, the last
three sections of the tutorial: “PIT-
FALLS”, “SUBROUTINES” and
“CP/M INTERFACE".

e ot

Correction

(Editor’s Note: This note refers to the
review of FABS and MAGSAM which
appeared in the December issue, Vol.
II, No.7 pp15-17.)

Greg Scott of Micro Applications has
informed me of some errors in the arti-
cle on MAGSAM and FABS.
MAGSAM does not use a hashing
structure but instead maintains the
primary index in ASCII sorting se-
quence and uses a binary search to
locate keys. The structure in figure 2
of the article is still a good depiction,
however. (The figure references are
reversed in the article.) The use of an
overflow bucket still can slow access
to keys down, but the binary search is
probably a little faster than a hashed
search. I made a statement that
MAGSAM requires you to stop and
use a special program to reuse deleted
space. There are delete functions
which do make space from removed
keys and records immediately avail-
able. The reorganization referred to
is useful for records which are logi-
cally deleted but are not removed im-
mediately.

In my discussion of FABS, the figure
really only represents nodes of two
keys. There is actually a node at the
next level associated with each key in
the node. That is, the pointer to the
next level node is part of each key in a
node.

Steve Patchen

Notice

This issue (dated February 1982) was
mailed from New York on January
27th. We would appreciate your help
in tracking the deliveries. Should you
have any comments, or any problem
with the timeliness of this issue, please
call our Subscription Department at
(212) 722-1700, or write to: Lifelines
Subscription Department, 1651 Third
Ave., New York, N.Y. 10028.

Lifelines, February 1982



Zoso

SOFTWARE PIRACY ETC.

Some six months ago, I chanced upon
the June, 1975 issue of ‘73’ (a ham
radio magazine). The idea for what
follows was born then, but until I saw
the December ‘81 Kilobaud/Micro-
computing and read Publisher Wayne
Green'’s editorial on ‘Program Theft’,
held off. I'm not holding off any
longer!

In his December editorial, Mr. Green
goes on the warpath against the rapa-
cious scoundrels who have been rip-
ping off Instant Software products.
Mr. Green's pique is ostensibly backed
by a $10000 reward for; “...informa-
tion which enables us to get a convic-
tion of someone copying our copy-
righted programs...”; is this phrasing
as clumsy as it sounds? I don't think
so! Let's wait a year and see if Mr.
Green and his ten grand have parted
company.

Mr. Green goes on to say that this pre-
tax bounty is sufficient to take two
people on an all-expense paid trip
around the world. Maybe so, but only
if those lucky travellers are willing to
eat lots of wild berries picked during
very long walks or whatever they
might find floating during some even
longer swims. Oh yes, back to the
thieves; amongst other ideas for nail-
ing them, Mr. Green suggests collect-
ing hard evidence with a concealed re-
corder. Sounds like a job for Special
Agent Maxwell Smart... Mr. Green
volunteers that he is never without his
microrecorder. Caveat locutor!

If nothing else, one would have to as-
sume that thievery is one thing Mr.
Green will not tolerate. Or would
one? The June, 1975 issue of ‘73’ maga-
zine was published by none other than
Wayne Green and, beginning on page
67, is the final installment of an article
by Spenser Whipple Jr. entitled Inside
Ma Bell’, which offers little more than
detailed instructions (complete with
schematics) for building Red boxes
and Blue boxes. Red boxes are used to
trick older pay phones into ‘thinking'’
that coins have been inserted when the

Lifelines, Volume II, Number 9

phone is being fed nothing more than
air (in the form of coded tones). Blue
boxes enable one to make long dis-
tance calls for no charge. The Blue
boxes described by Mr. Whipple were
based on a pair of Intersil 8038CC
devices, and if the larcenous ‘hobby-
ists’ of 1975 didn't at least improve on
the published design by using high
quality multi-turn trim pots, I
wouldn't be surprised to hear that a
few of them soldered their way
straight into some Federal work farm.

So what's the real story, Mr. Green?Is
Ma Bell fairer pickings than Instant
Software; or is it simply that you as-
sumed we'd all forgotten? In light of
your latest moralizing, I'd wager
you'd rather not cope with a sudden
deluge of requests for reprints. Sepa-
rately, I'll bet you don't want the Tele-
phone Company associating your
good name with a sudden theft of ser-
vice epidemic.

N.B. - As of June, ‘75, one could con-
tact either Mr. Whipple or Mr. Green
c/o0 73’ Magazine - Peterborough, NH
03458. At least one of these gentlemen
may still be reached at that address.

I have not seen GIGO's column in In-
foWorld again. I hope it wasn't any-
thing I said last time. You know,
maybe I was too hard on her. I men-
tion this because, as it turns out, she
was pretty much right on target about
‘The Last One’. I have not yet seen
‘The Last One’ generate a program,
but during the last few weeks, I have
seen it completely fail to do so on a
number of occasions. This may sound
discouraging, but don’t abandon hope
just yet. The professionally written
copyright and ownership notice which
accompanies ‘The Last One’ (Version
1.0) implies a product which someone,
someday may well want to own for
free. Beware pirates; read that notice
carefully; on first glimpse, it would
seem that there is a standing $5000
bounty on your heads. Not so! The
owners of the copyright merely “re-
serve the right” to pay this sum for in-
formation resulting in conviction of

anyone who distributes unlicensed
copies. That’s quite some way to set
the stage for an honorable business re-
lationship, don’t you think?

How does the old saying go? “Money
saved is money earned”. It seems one
can ‘earn’ a tidy sum by ‘reserving a
right’. What the deuce; I'm entitled to
make a living too! I think Il just ‘re-
serve the right’ to help myself at Fort
Knox.

Some ‘must’ reading on the subject of
software piracy can be found in the
January, ‘82 issues of BYTE and Es-
quire. The Esquire article profiles
some individuals who have proven
especially adept at defeating various
protection schemes for Apple soft-
ware and the article identifies a sur-
prisingly big namie in the computer in-
dustry whose skills were honed as a
Phone Phreak’ (the unofficial job title
of a person who rips off the Phone
Company). Don't miss reading this!
The same applies to Jerry Pournelle’s
piece in BYTE. I can't recall having
read a more intelligent analysis of the
software piracy problem.

Sometimes I hammer away too fre-
quently on topics which I find espe-
cially troublesome. Thanks to the
good folks at BYTE, I'll be able to keep
this failing in check (at least this time).
Read the letters on page 18 of the Jan-
uary, ‘82 issue and you'll know just
what I mean.

There is a computer store in New York
City which has really found a way to
overburden a microcomputer while
overburdening their customers at the
same time. They have implemented a
replacement for the common cash reg-
ister. It works like this: Every transac-
tion (even buying a single magazine) is
keyed into their computer, complete
with unwieldy product codes and a
plain English description. As you
[have to] wait, their computer is up-
dating on-hand cash and inventory
files and Lord knows what else. After
far too long, you do get a nice detailed

(continued next page)

19



receipt, printed before your very eyes.
Owing largely to the obstinacy of [at
least some of | the people who ring up
the sales there, (perhaps carillon
would be a better word than ‘ring’),
youwon't see any change or merchan-
dise until this little Passion Play has
run its tiresome course.

One of New York’s most prestigious
department stores does something
equally odious on a much larger scale.
The offenders here are the many
point-of-sale terminals attached to a
time sharing machine. Whenever you
buy something, all the gibberish on
the price tags must be keyed in ex-
actly. Only when the main computer
is in a cooperative mood, (which is not
always), will a transaction proceed
without substantial delay. From what
I've seen, loyal customers (and there
are many) probably sacrifice many
months of their lifetimes to this system
alone.

I prefer shopping the old fashioned
way. I like simple register receipts,
devoid of product codes and I like get-
ting them pronto. How a business
maintains its aftersale records is
neither my concern nor my responsi-
bility and I deeply resent this work be-
ing done while I wait. One of these
days, maybe enough customers will
get so fed up with this kind of incon-
siderate excess that certain businesses
will be obliged to buy much more
powerful computers, rediscover ser-
vice bureaus or simply relearn how to

do it all by hand.

Now there’s no reason for me to single
out the stores in question, so I won't.
Okay, just a couple of hints... If you
walked to the computer store, starting
at the Empire State Building, you'd
have to walk less than four blocks.
The department store sits atop a busy
subway station, less than two blocks
from a bridge to Queens.

I think it's safe to assume that there are
fortunes to be made by writing quality
applications for the IBM Personal
Computer. I'm hoping to grab a piece
of this action myself. Normally, my
first step would be to buy one of these
machines to use as a development sys-
tem. Unfortunately, it's not quite so
simple. I'm only geared up for 8”
drives and IBM doesn't presently offer
them. If forced to purchase a machine
which uses the smaller 5” units, I'll not

20

only be stepping backwards so to
speak, but I'll be turning my back on
many dollars worth of 8” hardware,
media and know-how which are al-
ready on tap. This dilemma of mine
will cease to be a factor when some en-
terprising hardware manufacturer
comes up with a good 8” DMA disk
controller for the IBM P.C. An even
more efficient solution would be a
terminal which can emulate the IBM
unit, graphics and all. Won't someone
help? Please!

OLD CONTEST NEWS

Due to an incredible work overload, I
had to farm out the judging duties for
the first contest (see Lifelines - October
‘81). Naturally, as promised, the lucky
winners will still be awarded their
prizes.

BROKEN PROMISES

Last time, with the best of intentions, I
offered a preview of the second con-
test. As originally envisioned, that
contest would have tested your under-
standing of a rather complex, largely
uncommented BASIC program. There
has been a change of plans here too. In
truth, the program was finished and
tested early in December. Sadly, it
was almost four pages long, which is
simply too much space to devote to a
contest problem. I'm new at the con-
test game, so I hope you'll understand.
Actually, it's better this way; the [sec-
ond] new contest involves only three
words and presents a more interesting
challenge in the bargain.

THE SECOND CONTEST

ORANGE - PURPLE - SILVER « —
The ‘Key Words'

There are many things which can ac-
curately describe the key words’. For
example; each is a color, each is six let-
ters long, each has two syllables, four
letters in the middle of each word can
be used to form other words: RANG-
PURL-VILE, and so on. If you look at
the 'key words’ long enough, and espe-
cially if you let your computer help
you look, youwill find dozens (or pos-
sibly hundreds) of equally valid an-
swers. However, from what I've seen
so far, one common attribute is more
remarkable and unusual than any of

the others. This ‘special answer’ pres-
ently resides in a sealed envelope,
safely hidden somewhere in Lifelines’
office. I am the only person who
knows what the envelope contains,
and that envelope will be only be
opened in the presence of the contest
judges the day after the contest dead-
line.

OBJECTIVE AND PRIZES: The ob-
ject is to submit the longest valid list of
things or qualities common to the ‘key
words’. Each item in the list will be
worth one point, The ‘special answer’
is worth twenty-five points. The high-
est scores win. The prizes are essen-
tially as described for the first contest;
see Lifelines - October,’81.

CONTEST RULES: Except as noted,
the rules are the same as for the first
contest.

Entries for this contest must be post-
marked no later than April 1, 1982.
Number your answers and indicate at
the top of the [first] page how many
valid answers appear in your entry.

Answers duplicated semantically or
otherwise in a single entry list may be
disqualifying. For example; if you
noted that the three key words’ were
all adjectives and later noted that all
three were ‘parts of speech’, your en-
try might be discarded regardless of
other redeeming merit.

Patently invented guesses will disqual-
ify an entire entry. This rule is in-
tended to eliminate answers which
can't readily be validated. For exam-
ple; you might happen to know that
the key words accurately describe the
most popular eyeliner shades worn by
trendies in Albanian discos. Whether
true or not, such esoterica will be dis-
qualifying unless fully documented. If
the judges deem that an otherwise
strong entry suffers only from a single,
marginal violation of this rule, that
answer rather than the entire entry
will be rejected.

HELPFUL HINTS: If you have any
doubts as to whether an answer in
your list will be judged acceptable,
don’t include it.

About the ‘Special Answer’: By my
rough estimate, this should appear in
about half of the entries. Your com-
puter will be of no help whatever in
getting this far; rely on common sense

Lifelines, February 1982




and your imagination instead. I doubt
that PHDs will have any measurable
edge over bright sixth graders. In fact,
familiarity with the English language
(both spoken and written) at an ad-
vanced sixth grade level is about all
you'll need. This applies regardless of
regional dialect or patois. The ‘special
answer’ is not facetious; jokes and
trickery are not involved.

About the other answers: Here, intelli-
gent use of your computer may well
afford you the winning edge.

IN CLOSING

Finally, a few questions from the mail-
bag and some answers from the heart:

Q: Are you English or American?
Z: Smile when you ask me that, Var-
mint.

Q: What do you look like?

Z: Pretty much like my passport
photo. I'm 5'11” when I slouch
and I've got big brown eyes.

Q: What do you do for fun?

Z: Smile when you ask me that,
Vixen.

Q: Do you write under another name?

Z: Yes, "Zoso'.

Q: What do you do with computers?

Z: 1 use them.

Q: I'm thinking of buying a computer.
What should I get?

Z: Enough money for your dream

machine with enough left over to
cover the divorce which often fol-
lows.

Well guys and gals, that's it for this
time. I'll be coming back at you soon.
I'm counting on some good contest en-
tries this time, so get cracking. To help
get you in a contest mood, I buried a
truly dreadful pun somewhere before
the Contest News. See if you can find
it.

Take Care,
Zoso

A

Lifelines, Volume II, Number 9

Letters

December 10, 1981
Dear Editor,

I read your short report about a sup-
posed bug in the Z 80 CPU which was
discovered by a Mr. Robert Burns.

I would suggest that this is a bug in the
Zilog documentation and not in the
280 CPU. Tf you look in the Mostek
Z80 Programming Manual Version
2.0 from October 1978 you will see
that the carry flag is listed as
“unknown” on these block I/O in-
structions, as its state is dependent on
the data input or output.

We would be grateful if you would
bring this to the attention of your
readers in order to correct the impres-
sion that there are unknown faults in

the Z80 CPU.

Best regards

W. Finkle
MOSTEK GmbH
December 4, 1981
Dear Kelly:

I'm sorry it's taken me so long to get
back to you. The last month has been
a hectic one, to say the least.

Concerning your request for sche-
matics and source code: we will be
selling a technical reference manual
early next year through our dealer net-
work. I'm not sure what revision level
board you have in your machine, so
you'll need to supply me with that in-
formation (your serial number will be
fine) before I can proceed with your
request.

I'd like to make a few comments about
your article, also.

1. You have an old version SYSGEN.
You should have received a letter ex-
plaining our updating policy for new
keyboard, ROM and software. The
problem goes away with the fix.

2. If you liked the documentation in
round one, you'll love it come January

1st when we begin supplying a new
manual with a completely rewritten
tutorial on ALL of the software we
provide. I guess I have the usual
writer’s ego, but I think that this will
be one of the best user manuals around
(if the comments on my CP/M book
and my editing of InfoWorld are any
indication, I might even be right!)

3. Your comments concerning free up-
dates are amusing. Having been on
both sides of the fence, all I can say is
that Osborne Computer Corpora-
tion’s policy is to fix the things that we
should have done correctly. On the
other hand, when significant changes
in product occur (double density,
WordStar version 3.0, etc.), we will
have to charge for these items.

4, Iwould be careful about the 5" win-
chester ideas. We would offer such a
goodie if it were practical, but no one
can show us working models which
will sustain the amount of abuse a por-
table machine gets. If it's hard disk
you're after, Corvus and others
already have implementations that
run off the IEEE-488 port, and I'm
quite impressed with the speed (faster
than the same machine on an Apple
with a DMA card).

5. The reason we didn't explain about
the diagnostics is that a) they might
not continue to stay in ROM, and b)
the messages aren't extremely enlight-
ening to novice users. You should
warn folks that using the disk test
erases any and all data on a diskette,
so don't use your data diskettes to per-
form a disk test. Also, the disk test
performs no retries. In other words, if
you get a few errors, nothing to worry
about; if you get gobs of errors, you
probably do have something wrong.

6. We will NOT make the BIOS con-
figurable by the user. With the update
you'll find that we’ve made it so most
everything you'd want to send infor-
mation to has been implemented in
BIOS. If you know enough to recon-
figure a BIOS, you know enough to
create your own from scratch. We do
not want to get into a situation where
we have to support multiple versions
of the BIOS or explain how to change
things. I will caution you that chang-
ing your BIOS also may mess you up
for some nifty new offerings when
double density becomes available in
February (like an Osborne which can

(continued on page 26)

21



22

Macros of the Month Edited by Mike Olfe

(Editor’s Note: Congratulations to Ward Christensen, who, as our winner, has graciously prolonged the existence of this col-

umn via his contribution below. If only all those out there hoarding PMATE macros would be so kind! Send in those
macros —Mike Olfe.)

DECIMAL NUMBER TO @1

The following macro will scan a file until it encounters a decimal digit. It will then “eat” all subsequent decimal digits
(remove them from the file), leaving the decimal value in variable 1. You can then typically, do arithmetic on it, or moveit to
the end of the line, or whatever, then insert it back in the file with the (variable 1, inserted as an ASCII number). This is my
“permanent macro ‘D"’

“xDL[@t=0[%]((@t>47)&(@t<58)){ }{m}Jovl
[((@t>47)&(@t<58)){@1*10+@t-48v1d"}{_}]

which means:

~

XD ;permanent macro named "D"

R ;outer loop

@t=0 ;1if at end of file
2] ;exit macro

((@t>47)&(@t<58)) ;is char under cursor a decimal dig?
Livl ;yes, exit to following "["
{m} ;otherwise skip this character

] ;and loop back

.
’

; found a decimal digit

ovl ;init var O to a O

L ;loop "for each digit"
((@t>47)&(@t<58)) ;if it is a digit
{ ;then
@1*10 ;multiply previous var 1 by 10,
+@t ;add current ascii value of digit
-48 ;make in binary ('0' = decimal 48)
vl ;place back in variable 1
d ;delete the digit processed
- ;loop "for each digit"
} ;end of "then"
{ ;else
;exit, no more digits, value is in @1
T ;end of "else"
] ;end of loop "for each digit"

Here is an example of the usage of my .D macro. For example, if I have a series of labels:
RTN5  blah blah
RTN6  blah blah

and I want to insert a new routine after routine 5, then“renumber” the 9 labels after it, I manually insert the new label, the
position to the line above RTN, the first one to be renumbered one higher, and type:

Lifelines, February 1982



9[s
RTNS .d@1+1\]

which means:

o[ ;repeat 9 times

s

RTNS :search for (CR)RTN

@1+l ;add 1 to it

\ :insert number back into the file
] ;and repeat the 9 times.

FORMAT FILE NAMES IN COLUMNS
Mike Olfe showed a way to format a series of file names (inserted via xIfilename.filtype) in columns, by setting tab stops.
Here is an alternative way to format names, not as sophisticated (for example, it doesn’t know when to quit), but it also

doesn'’t change the tab stops. Also, I like to call it my permanent “F” macro, but sometimes I accidentally type “.f” when I
meant just the “f” (format mode), so this macro prompts “ready” and you must hit C/R to start it:

"XFgready$@k=13'[%] [[1@t=0[%]-m@x>64{m"} ] [(@x&15){9i"}{ }ldqr]

which means:

~

XF ;my "F" permanent macro
gready$ ;prompt with "ready"
@k=13" ;if key pressed is not C/R (' = "not")
(2] ;then abort the macro
L ;"else"
L ;loop for one line
1 ;go down 1 line
@t=0 ;1f at end of file,
[g] H exit macro, all done
-m ;move back over a C/R
@x>64 ;if the column is > 64
{m”~} : then skip C/R, loop
;and exit
T ;end of loop for one line
L ;loop inserting tabs to align
(@x&15) ;if in a tab, multiple of 16,
{9i"} : then insert tab, go
; back to "["
{ } ;otherwise exit, we are at tab stop
] ;end of tab loop
d ;delete the C/R
qr ;display
] ;and loop for next name

GO TO A SPECIFIC LINE NUMBER

Here is one of my “favorite” macros, because it it so simple. “89.g” will go to line 89 of the file. Since PMATE shows the cur-
rent line all the time, it is useful to remember a particular place you want to be, and use .G to go to it. A particularly good

st

general use of .g is to resume editing a file where you left off, after doinga “xj" save command. Since PMATE puts the current

(continued next page)
Lifelines, Volume I, Number 9 23



line number in the upper right corner, you look atit, and, for example if it was 1095, type “xj$1095.g". This will save the file,
(the “$" being an escape, so 1095 is not taken as the filename), then when editing resumes, go to line 1095 and continue. Here's
the .g macro:

XG@a-@ll
which means:
“XG ;permanent macro named "G"
Qa ;get the requested line number from "nn.g"
-@1 ;subtract the current line number
1 ;and move than many lines.

HEX NUMBER TO @1

Just as .D put a decimal number into @1, .H puts a hex number into @1. This can be used, for example, to change a value ina
file, from hex to decimal: “.h@1/":

“XHL((@t>47)&(@t<58)){ }{m}Jovl
[((@t>47)&(@t<58)){@1*16+@t-48v1d~}{((@t>"@)&(@T<"G)){@1*16+@T-55V1D"}{ }}]
@t="H[dJet="h[d]

which means:

~

XH ;perm macro named "H"
L ;repeat search for leading decimal digit
((@t>47)&(@t<58)) ;if a DECIMAL (leading) digit:
. : then break out of macro
{m} ; otherwise move to next digit
] ;and loop for leading digit
ovl vinit var 0" to 0
L ;repeat "for the number"
((@t>47)&(@t<58)) ;if decimal
{ ;then
@l*16 7 multiply prev tot by 16
+@t-48 ; add in this digit minus ASCII offset
vl : put it back in vl
a"} ; delete digit, and loop
{ ;"else"
((@t>"@)&(@T<"G)) ;if it is a hex digit
;then

@1l*1e6 ;multiply prev tot by 16
+@T-55 ;add in this digit minus ASCII offset

vl ;put it back in vl
a’} ;delete character, and loop
{ } ;else exit past next "]"
} ;end of digit loop
] ;end of loop
@t="H ;if there is an "H" (as in 5CH)
[a] ;then delete it
@t="h ;if there is an "h" (as in 5ch)
[a] ;then delete it

24 Lifelines, February 1982



SCROLL THE DISPLAY

At times, I would like the display to just scroll slowly, without having to type any scrolling keys over and over. This macro
scrolls until the break key character is pressed:

“Xs[1lqgdgr]

which means:

~

XS ;Permanent macro named "S"
L ; loop
] ;go down a line
qd ;delay
qr ;display
] ;and repeat
Ward Christensen
Software Producet Brief:
DDUMP and DTEST Jim Mills

These two utility programs are from
Elektrokonsult, a firm in Norway. To
borrow their product descriptions
from their ad sheets, “DDUMP (Disk
Dump) and DTEST (Disk Test) are
two advanced disk utilities which
work with most types of drives and
disks used with CP/M, including 5"
and 8", hard and soft sectored, single
and double density, single and dual
sided disks. Both programs automati-
cally adapt to the actual number of
tracks and sectors per track for most
types of diskettes without manual
intervention. Both programs run on
any 8080, 8085 or Z80 system.” Well,
that sounds fairly straightforward.
They probably use the CP/M version
2 disk allocation tables in the BIOS to
do all the disk I/O, so they adapt to
any disk format because there is no
adaptation necessary. Ok, what do
these programs do for you?

I looked at DDUMP first. Its des-
cription reads: “DDUMP is a sector
oriented disk dump utility, which
makes it possible to examine and
modify any byte(s) on any sector, ad-
dressed by track and sector number,
OR addressed by allocation block (or
‘group’) number. Sector contents are
printed and/or displayed — and may
be patched — in both hex and ASCII
formats. DDUMP allows you to dump
and patch data not otherwise accessi-

Lifelines, Volume II, Number 9

ble by CP/M, and it may for example
be used to examine test files for control
characters, tabs, etc, study how
CP/M allocates disk storage, examine
and repair a damaged disk and recover
deleted files and lost data.” The first
thing I thought of when I read this was
Ward Christensen’s DU (Disk Utility)
program, which does all of the above
and is in the public domain (free).
Since I am somewhat familiar with
DU, I set out to compare the two pro-
grams. Maybe DDUMP has some
features not in DU, or vice-versa.

The first thing to do was look at the in-
struction sheets (user’s guide) that ac-
company the disk. This 16 page docu-
ment is well written and easy for most
any computer owner to understand,
assuming a minimum knowledge of
how CP/M and disk drives work. The
user’s guide starts right out with a
summary of commands followed by a
“first time through” section for the
new user of DDUMP. Following this is
a large section elaborating upon each
command, then a section on error
messages, followed by several pages
of discussion on how disks work, how
CP/M allocates disk space, hints and
kinks, how to patch DDUMP for up-
percase printout only, and references
to two books and the CP/M system
documentation from Digital Re-
search. My first impression, without

actually running the program, was
that it was not as sophisticated as
Ward’'s DU, but I decided to keep an
open mind, so [ ran DDUMP.

It came up and ran with no problem,
and it did everything the user’s guide
says it should. I did a dump of my
system tracks, the directory, and a
short program out on disk. Their sec-
tor ‘dump’ format is nice in that it
gives a ‘ruler line’ at the top of the sec-
tor dump, indicating the ‘ID" or each
byte in the dump (ie: address 3F within
the sector). I was not impressed with
their sector patching mode (similar to
the ‘'S’ command in DDT) for either
hex or ASCII patching. I did notice,
when dumping the directory, that
R/O and SYS files showed up as “..M"
in the ASCII part of the dump (ie:
MAC.COM listed as “MAC..M”, the
high bits of the ‘C’ and ‘O’ in COM
having been set to ones by CP/M
when [ stat’'s the MAC.COM file to
R/0O and SYS.) DU is smart enough to
know that these are still .COM files.
All in all, I was underwhelmed, hav-
ing used Ward's DU for some time
now. There is no fair comparison,
DDUMP is outclassed by DU, which is
available from the CP/M Users’
Group .

Well, having finished with DDUMP in
less than two hours, including the

(continued next page)

25



writing of this portion of this article, I
turned my attentions to DTEST.
Here's Elektrokonsult’s blurb:
“DTEST is a fast test utility which tests
a disk by writing and reading a test
pattern on every sector. Disk errors
are listed on the printer and/or con-
sole, with track-, sector and allocation
block (or ‘group’) number. All bad
sectors are locked out from later use
by CP/M by automatically collecting
them in a write protected ‘garbage’
system file. The program also tells you
whether a particular bad sector is on
the reserved system tracks, on the disk
directory area or on a sector which
will never be used by CP/M. DTEST
may also be used to test disk drives.
Save money and frustration by em-
ploying DTEST to test every diskette
before you start using it with CP/M.
By doing this, you will reduce the
probability of later disk crashes, and
you may even start using those ‘not
100% perfect’ disks which you get
now and then.”

As with DDUMP, I start with the
documentation. This time it's a 13
page document in a style similar to the
DDUMP user’s guide. There isn't as
much to tell as with DDUMP, the pro-
gram only has a few options: it asks
you if you really want to wipe all data
on the disk, if you want a quick “read
only” test (or write/read test), how
many passes over the disk you want
(maximum of 99), whether or not to
output bad sector information to the
printer, and which drive to use. It then
asks you to insert a disk and type
return to start the test. “During the
test, DTEST will report all bad sectors
to the printer and/or console, with
corresponding track and sector num-
bers, and to which allocation blocks
the bad sectors belong.” (from the
user’s guide.) Well, I guess it’s time to
try it out.

I first used the “read test only” option
and immediately got some errors. All
that DTEST tells you is the track and
sector numbers, and the block (or
group) allocation numbers (if appro-
priate) for the bad sector. It does not
tell you the data in error. In fact, I
found that DTEST reports false errors
if you do a quick “read test only” if
any single data byte on the disk is not
‘E5’ hex. That seems a little inconven-
ient, unless you've just finished for-
matting your disk. If youdo the longer
write/read test, then data is written to
disk as all E5’s, so there is no problem

26

reading it back. On my single sided
single density system (Tarbell con-
troller, 8080 CPU) the read-only test
ran for one and one-half minutes. The
longer write/read test ran for two
minutes and forty seconds.

When DTEST detects an error (or er-
rors), it checks to see if they are in the
system tracks or the directory or the
data area. If the error is in the system
tracks, DTEST warns you not to use
the disk as a system disk. If the error is
in the directory, it tells you to aban-
don the disk. However, if the error is
in the data area DTEST allocates the
bad sector(s) to a read-only system file
named BDSCTRS.GRB, which I veri-
fied. That's about it.

So, how does this compare to similar
programs, such as FINDBAD from
CP/M Users Group volume 207
Knowing how the programs function,
I think they are probably both about
the same functionally, although
DTEST has a few more options built
into it. Both programs create a “bad
sector” file that is reserved under
some strange filename, such as
[UNUSED].BAD (FINDBAD uses that
one). If you STAT these to system
files, which DTEST does automatical-
ly, then PIP won't read them, so you
can still do “PIP A:=B:*.*" but you
can't do a full disk copy, such as with
DFOCO or COPYFAST, without hav-
ing bad sector errors, as these pro-
grams copy track by track, rather than
file by file. You could, I suppose, alter
your track by track copy program to
search the directory for a particular
filename, look at which groups (or
blocks) are allocated to that filename,
and not copy the sectors allocated to
that group, or groups. But, I digress.

Elektrokonsult sells these two pro-
grams for $29.95 each and they are
available on either standard 8-inch
SSSD diskette or on Heath 5-inch
CP/M (no mention as to whether it’s
hard or soft sector format for the
Heath). I, personally, would not
spend the money for either program,
mostly because equivalent programs
are available from the Users Group,
but that is strictly my opinion. Others
may find these utilities to be just what
they want, although it would surprise
me.

What really does surprise me, and has
for some time, is that I keep seeing
various CP/M utility programs being

offered to the public at prices from
twenty dollars up, when there are
similar and/or functionally identical
programs available for the cost of
media (and mailing and copying char-
ges that total $8 per disk for the
CPMUG disks) from the CP/M Users
Group, or SIG/M in New Jersey. It's
relatively free software, and quite a bit
of good stuff, too. Yet [ am constantly
amazed to see for sale utilities that
duplicate programs (easily available
programs) that are in the public do-
main. These people are selling (and
presumably writing) CP/M pro-
grams. This usually requires a fair
knowledge of the operation of CP/M
and a familiarity with the CP/M mar-
ketplace, doesn't it? Well, enough
complaining. I would like to offer
some constructive criticism for those
who write and sell CP/M system utili-
ties. I would recommend that all such
programmers acquire the entire CP/M
Users Group and/or SIG/M libraries
and familiarize themselves with the
programs found therein. [t would save
end users, product reviewers, and
others (I'm sure) a lot of grief over pur-
chasing a product one week, then find-
ing its equivalent (for free) in the
public domain the next week. I shall
get down off of my soapbox, now.
Thank you for reading.

(continued from page 21)
read and write IBM, TRS80, Xerox
and Zenith diskettes). I guess our posi-
tion is best summarized as follows: if
you want to fiddle around with the
system, we'll provide enough infor-
mation so you can, but you're on your
own; if there’s something that should
be in the BIOS and isn't, we'll put it in
and support it.

I hope this clarifies some of the points
you raise in your article. If you need
any further information, please don't
hesitate to call me, I promise I won't
take so long to get back to you next
time. Also, if you still want sche-
matics, forward your serial number to
me, we have six revisions of the
motherboard now, and it would be
nice if your schematics matched.

Sincerely,

Thom Hogan

Director Software &
Publications

Osborne Computer
Corporation

Lifelines, February 1982



Using the CP/M-380 BI10OS For

Direct Disk Accessing

Want to write a disk utility that will run with anyone’s disk
controller? Maybe a copy program that'll work with single
and double density diskettes? Maybe even hard disks?
These kinds of programs are generally written to work on
one specific disk controller, and are not usually transport-
able between unlike systems. It is possible, however, to
write these programs in such a way that they will automati-
cally adapt themselves to whatever disk environment they
execute in, by using the techniques I'll describe in this arti-
cle.

I've used these methods to upgrade three very fine public-
domain utilities(1) so they can perform this “dynamic”
adaptation. Previously, each of these utilities contained a
long series of conditional statements for different hardware
configurations. If yours was not on the list, you either
couldn’t use the utility, or had to spend a considerable
length of time determining the parameters to “plugin”. Fur-
ther, if your hardware was included within the condition-
als, the utility had to be separately assembled for each dif-
ferent disk format to be used. Clearly, this nuisance limited
the use of otherwise very valuable programs.

In their present form, these utilities need not even be reas-
sembled by the user. They run on virtually every disk con-
troller/CBIOS combination running CP/M-80 2.x, and
most systems running CP/M-80 1.4. And, best of all, they
run correctly when intermixed formats of disks are encoun-
tered; this means you can, for example, run the SAP utility
from a double-density disk on drive A, and expect it to work
correctly on a single-density disk on drive B.

The key to understanding these disk-accessing techniques is
the fact that CP/M-80 proper (i.e., the BDOS) runs un-
changed among the many disk configurations to which it is
interfaced. The only portion of CP/M-80 that changes from
system to system is the CBIOS (except for versions of
CP/M-80 prior to 2.0; I'll explain later how to “work
around” CP/M-80 1.4). It follows, then, that by accessing
the CBIOS in much the same way that CP/M-80 itself does,
transient programs may also adapt to different systems.

There is one mechanism defined within the CBIOS that de-
termines the physical disk characteristics of any given drive;
this mechanism is called the Disk Parameter Block (DPB).

DPB OVERVIEW

The DPB is used by CP/M-80 itself to determine the struc-
ture of the disk system to which it is interfaced. In CP/M-80
versions prior to 2.0, the DPB was part of the operating sys-
tem itself, and information regarding its location and struc-
ture was available in general only to OEMs (Original Equip-
ment Manufacturers). The DPB had to be patched to ac-
commodate non-standard disk systems (i.e., non eight-inch
floppies). Since most of the parameters were byte values

Lifelines, Volume II, Number 9

rather than word values, early versions of CP/M-80 were
rather limited in the disk capacity they could address.

CP/M-80 2.0 changed all that, by moving the DPB into the
BIOS (Basic I/O System), leaving the DPB definitions to the
system implementor. This allowed simpler interfacing to
various disk formats. In addition, most of the restrictions
on disk capacity were removed by changing the byte values
to word values, allowing large-capacity hard disks to be di-
rectly addressed by the operating system (CP/M-80 1.4
could be interfaced to hard disks; this was usually done by
segmenting the disk into “regions”, only one of which could
be active at any one time. A utility program was usually
provided to activate/de-activate these regions. This was a
nuisance to both the user and the system implementor).

The specific format of the DPB is detailed in Table 1 for both
CP/M-80 1.4 and 2.0, and is physically ordered as shown.

The parameters are defined as follows(2):

SPT — This is the number of 128-byte sectors per track, in-
creased from a byte value in CP/M-80 1.4 to aword value in
CP/M-80 2.0. this value should not be confused with the
physical number of sectors per track; if your system has ten
512-byte sectors per track, then this value will be 40.

BLKSHF and BLKMSK — These parameters are used to de-
termine CP/M- 80’s block size (also called “groups” by some
people). A “block” is the minimum amount of disk space
that can be allocated by CP/M-80, and is always a group of
sectors that is an integral multiple of 8. Specifically,
BLKSHEF is defined as the logarithm of the number of sectors
per block to the base 2 (LOG2 (SPB)), and BLKMSK is
SPB-1. The reason for this rather cryptic way of specifying
block size is that this form provides the fastest way of doing
disk arithmetic, using shifts and logical operations on the
parameters themselves. BLKSHF and BLKMSK can take on
values as defined in table 2.

DSM - This is the maximum block number available on the
disk, with block numbering starting at zero.

EXTMSK- this parameter is present in CP/M-80 2.0 only,
and is used to specify the number of extents contained in a
directory entry (an “extent” is a 16K group of data used by
CP/M-80 to partition files). Under CP/M-80 1.4, one direc-
tory entry described one and only one extent. CP/M-80 2.0
allows up to 16 extents to be described by one directory en-
try, under control of this parameter. It should be noted that,
although the ALTERATION GUIDE seems to indicate that
EXTMSK must be non-zero for certain disk characteristics,
this byte should always be zero for random-access com-
patibility with CP/M-80 1.4 programs. The following table
is from the ALTERATION GUIDE, and is present also in
Digital Research’s MP/M II SYSTEM GUIDE, as a MAXI-
MUM value (only) for EXTMSK:

(continued next page)

Ron Fowler

27



28

BLOCK SIZE DSM <256 DSM > 255
1024 0 N/A
2048 1 0
4096 3 1
8192 7 3

16384 15 7

DIRMAX - This parameter determines the total number of
directory entries which can be stored on a drive. It is defined
as the maximum directory entry number, with numbering
starting at zero. Thus, if there is room for 128 directory en-
tries, this value would be 127.

DIRALO, DIRALO, DIRAL1 - These bytes are used to allo-
cate space for the directory. DIRALO is the entire param-
eter (8 bits) used under CP/M-801.4; DIRALO and DIRAL1
combined form the 16-bit value used under CP/M-80 2.0
(DIRALO is the most-significant byte, DIRAL1 is least).
Each bit in this parameter reserves one block of data for the
directory. It should be noted that this parameter in no way
determines the directory size; it merely serves to allocate
space in CP/M-80's allocation bitmap, thus preventing any
file allocation.

CHKSIZ - This is a value present only under CP/M-80 2.0,
and specifies the number of directory sectors to perform a
checksum on. This checksum is used by CP/M-80 to detect
changed media; when using non-removable media (such as
hard disks), this value can be set to zero, thus specifying no
and allowing a much faster disk log-in. With removable
media, CHKSIZ is defined as (DIRMAX+1)/4, which is
simply the number of sectors occupied by the directory.

RESTRK - This value is the number of reserved tracks (com-
monly called the “System Tracks"”). These tracks are not ac-
cessible by the file system for directory or data allocation,
and usually contain the operating system image, and a boot-
loader to load the system. Note that when large physical
disks are segmented into smaller logical disks, this param-
eter will contain all of the tracks of any previous logical
drives.

SECTOR TRANSLATION

Also associated with direct disk accessing is the concept of
sector translation. This is a technique used to associate the
physical disk sectors with the logical sectors requested by
CP/M-80. Consider the physical movement of the read/-
write head over the diskette: if sectors are numbered consec-
utively, then as one sector is read, it is very likely that, as the
sector just read is being processed, the head will move past
the next sector or two. This would require waiting for the
entire disk to make another revolution before reading the
next sector, effectively limiting the access rate to one sector
per disk revolution.

Sector translation allows more efficient disk accessing by
ordering the physical sectors in a “skewed"” fashion. On any
given track, we will write the first sector, skip a number of
sectors, then write the second sector, skip again, and con-
tinue this pattern for the entire revolution of the disk. On
the next revolution, we write some of the sectors skipped on
the first revolution, and continue with this until the entire
track has been written. This is accomplished by translating

the “logical” sector number requested by CP/M-80 to a phy-
sical sector number using a table called the Sector Transla-
tion Table.

Whenever CP/M-80 requests a sector (viaa SETSEC call on
the BIOS), it first calls a BIOS entry point called SECTRAN,
which performs this translation using the sector translation
table. SECTRAN will usually use the passed logical sector
number (with sector numbering always starting at zero) to
calculate an offset into the sector translation table to extract
the physical sector number.

LOCATING THE BIOS VECTOR

The BIOS entry points are accessible to a transient program
by using the jump at location 0 (the “warm-boot” system en-
try point) as a pointer into the BIOS jump table. The loca-
tion of the base of the table can be found by executing the
following code sequence:

LHLD CPBASE+1;get address field of jump at loc O
DCX H ;it points to second jump instruction
DCX H ;so decrementing pointer fo the first
DCX H ;jump instr. yields table start

Note that CPBASE (equated to 0 in “standard” CP/M-80
systems) is the “base” of CP/M-80; I always define
CP/M-80 locations using this variable in order to facilitate
moving them to the special versions of CP/M-80 created for
systems (such as the TRS-80 model I and the Heath H8)
which have ROM in low memory. Such systems have
CPBASE equal to 4200H.

I've found the best way to access the BIOS is to move the en-
tire entry jump table down to a local area, and perform calls
on the local table whenever it is necessary to do BIOS calls.
This is accomplished by the following subroutine:

GETVEC: LHLD CPBASE+1;get BIOS table pointer

DCX H ;as above

DCX H

DCX H

LXI D,MYTABL;get pointer to local table

MV B,3*13 ;13 entry pnts, 3 bytes each
MOVE: MOV A,M ;perform the move

STAX D

INX H

INX D

DCR B

INZ MOVE

Before this subroutine returns, it should test for CP/M-80
version number (because the sector translation routine,
SECTRAN, is not provided in the BIOS jump table under
CP/M-801.4):

MV C,12 ;"GET VERSION" FUNCTION NUMBER
CALL BDOS

MoV A,H sTEST IT FOR NON-ZERO (2.0)
ORA L

RNZ sWE'RE DONE IF 2.0

LHLD BDOS+1 ;FIND BDOS ENTRY POINT

LXl1 D,9 ;OFFSET TO SECTRAN ROUT INE

Lifelines, February 1982



DAD D
XCHG ;GET SECTRAN ADRS INTO DE
LXI H,SECTRAN ;POINT TO SECTRAN JUMP
; IN OUR LOCAL JUMP TABLE
MV M,0C3H ;STORE A JUMP INSTRUCTION
INX H
MOV M,E ;PUT SECTRAN ADRS INTO JMP INST.
INX H
MOV M,D
RET

The local area set up to receive the table would look like
this:

MYTABL EQU $ ;define local BIOS jump table
CBOOT: DS 3 ;cold-boot entry point
WOOT: DS 3 ;warm-boot entry

CONST: DS 3 ;console-status test

CONIN: DS 3 ;console input

CONOUT: DS 3 ;console output

LS DS 3 ; list output

PUNCH: DS 3 spunch output

READER: DS 3 ;reader input

HOME : DS 3 ;home disk drive head
SELDSK: DS 3 ;select disk drive

SETTRK: DS 3 ;select track

SETSEC:. DS 3 ;select sector

SETOMA: DS 3 ;set disk transfer address
READ: DS 3 ;read a sector

WRITE: DS 3 ;write a sector

LISTST: DS 3 ;1ist status test
SECTRAN:DS 3 ;perform sector translation

After the table has been moved, any BIOS routine can then
be called by name.

LOCATING THE DPB

The Disk Parameter Block present under CP/M-801.4 is lo-
cated shortly after the beginning of the BDOS, and can be
found by adding an offset to the address field of the system
entry point at location 5. The following code will set up a
pointer in HL to the 1.4 DPB:

LHLD 6 ;address field of CP/M-80 entry
LXI D,52 ;DPB occurs 52 bytes after entry
DAD D ;add the offset to entry

CP/M-802.0 allows access to the DPB via a system call. The
following code can be used in place of that given previously,
when operating under CP/M-80 2.0:

MV €,31
CALL 5

;"get dpb" system function number
;system entry point

Quite often, it is necessary to access the disk while avoiding
BDOS function calls (e.g., when accessing the BIOS disk
drivers directly). In this case, the DPB may be located by us-
ing the BIOS SELDSK call. SELDSK under CP/M-80 2.0 re-
turns the address of a data structure called the Disk Param-
eter Header (DPH) in the HL register pair (or the value 0 if
the drive sent to SELDSK doesn't exist). The DPH contains

Lifelines, Volume I, Number 9

several items relating to the drive, two of which are useful
for direct disk addressing: the sector translation table ad-
dress (the first item within the DPH) and the address of the
DPB (offset 10 bytes into the DPH). The following code il-
lustrates direct BIOS access to these parameters:

MV C,1 ;requesting drive "B" in this example
CALL SELDSK;call the BIOS routine directly

MOV A,H ;test for HL=0 (select error)

ORA L

JZ SELERR ;select error branch to error handler
MOV E,M ; fetch addrs of sector translate table
INX H

MOV D,M

XCHG ;save sectran table address

SHLD SECTBL

XCHG

LXI D,9 ;remaining of fset o DPB address DPH
DAD D ;add in the offset

MOV A,M ;get lo byte of DPB address

INX H ;point to hi

MOV H,M ;fetch hi byte

MOV L,A ;HL now has pointer to DPB

The best way of deciding how to access the DPB is to include
both routines in your program, and link them together with
a CP/M-80 version number system call. This isillustrated in
the sample disk login routine of Listing 1.

USING THE DPB

Now that we know how to access the DPB (and other essen-
tial elements of the BIOS), it's time to learn how to use it. I'll
do this by defining several common problems in direct-disk
accessing programs, and show how these problems can be
solved using the parameters supplied by the DPB.

The most fundamental task we'll examine is the conversion
of block numbers to physical track and sector numbers.
This is necessary for finding the physical end of the disk
(which is almost always necessary when writing programs
that directly access the disk), and is also very handy when
doing selection by block number (a function provided by
several disk utility programs, most notably Ward Christen-
sen’s DU.ASM.)

Track and sector can be derived from the following equa-
tions:

Track
= ((SPB*BLN)/SPT)+RESTRK)
Sector = ((SPB*BLN) MOD SPT)+1

where
BLN = Block number
SPB = Sectors per block
SPT = Sectors per track
RESTRK = Sectors per track

The SPT value is explicitly defined in the Disk Parameter
Block, so the only question here in writing an actual conver-
sion routine is determining the SPB value. It so happens that
the BLKSHF and BLKMSK values determine implicitly the

(continued next page)

29



30

blocksize, as shown in Table 1. Referring to the table, note
that the SPB is always an integral multiple of 8 (which just
happens to be 2 3). As you can see, the BLKSHF value is the
base two logarithm of the number of sectors per block,
which simplifies the multiplication in the above equations
to a series of simple (and fast!) left shifts.

Now we're ready to build the block-to-track-and-sector
conversion routine. The argument to this function (the
block number) will be passed in the BC register pair, and it
will return with the track number in HL and the sector num-
ber in DE. We will use the parameters SPT and BLKSHF
from our local copy of the DPB (which we moved to a local
area in the previous routine). Here then is the code:

BLKCNV: MOV H,B ;sMOVE ARG TO HL
MOV ls,C ;FOR EASY SHIFTING
LDA BLKSHF ;FETCH LOG2 (SPB)

SHIFT: DAD H ;THIS LOOP EFFECTIVELY DOES
DCR A ;  (SPB*BLN)
JINZ SHIFT
XCHG ;FREE UP HL,SAVING (SPB*BLN)
LHLD SPT ;GET SPT FOR ((SPB*BLN)/SPT)
MOV A,L ;DO TWO'S COMPLEMENT SO WE
CMA ; DO DAD, WHICH IS FASTER
MOV L,A ;  THAN SUBTRACT ION
MOV A,H
CMA
MOV H,A
INX H
XCHG ;DIVISOR IN DE,DIVIDEND IN HL

The next block of code implements division by repetitive
subtraction. To save time, we are using the two’s comple-
ment of the divisor, since a double add instruction (DAD) is
much faster on an 8080 than a double subtract. The rest of
the routine follows:

LXI B,0 s INITIALIZE QUOTIENT

DIVLP: INX B ;BUMP QUOT IENT
DAD D ; SUBTRACT BY 2'S COMPL. ADD
JC DIVLP ;TILL WE RUN OUT OF DIVISOR
DCX B ;CORRECT OVERSHOOT IN QUOTIENT
XCHG ;CORRECT OVERSHOOT IN REMNDER
LHLD SPT
DAD D
INX H ;sMAKE SCTR # RELATIVE TO 1,NOT O
XCHG ;SECTOR NUMBER IS NOW IN DE
LHLD RESTRK ;COMPLETE TO TRACK EQUATION
DAD B ;BY ADDING RESTRK TO QUOTIENT
RET ;TO GET ABSOLUTE TRCK # IN HL

Now let’s build on that subroutine. We almost always have
a need to determine the disk limits, so we can take advan-
tage of the DSM (maximum block number) field of the DPB
to determine the maximum track and sector values. Here is
the code to accomplish that:

LHLD DSM ;FETCH MAXIMUM BLOCK NUMBER
MOV B,H ;MOVE IT TO BC

MOV c,L

CALL BLKCNV ;GET |IT'S TRACK AND SECTOR #
SHLD MAXTRK ;FIRST TRACK,

XCHG
SHLD

;THEN SECTOR
MAXSEC

(Note that this code was included in our disk login routine).

Let me digress for a moment and mention that the sector
number determined by BLKCNV is the logical sector num-
ber and may not (usually will not) correspond to the physi-
cal sector number on the disk. Before you try to use the
BIOS, call SETSEC, you should first call SECTRAN to do
the logical-to-physical translation. This is straightforward
under CP/M-80 2.0, but 1.4’s SECTRAN routine has the
side effect of calling SETSEC itself, so any subsequent call to
SETSEC should be inhibited.

Sometimes it is necessary to determine the block number,
given track and sector. This is a bit more complex, since a
given track and sector can fall anywhere within the associ-
ated block. To account for this, our sample code will deter-
mine a value called BLKDIS (block displacement). The com-
bination of BLOCK and BLKDIS will then be unique for
each track/sector combination. Both BLOCK and BLKDIS
are defined in terms of track and sector as follows:

BLOCK = (sector+ ((track-restrk)*spt)/log2(SPB)
BLKDIS = (sector+ ((track-restrk)*spt)) AND (SPB-1)

We can now code the conversion routine; given the track
number stored at CURTRK and the sector number at
CURSEC, the following routine will return the block num-
ber in HL and the block displacement in A:

CALBLK: LHLD RESTRK ;DO (TRACK-RESTRK)

XCHG
LHLD CURTRK
CALL SUBDE ;USING SUBTRCTION UTILITY
XCHG ;PUT (TRACK-RESTRK) IN DE
LHLD SPT ;NOW MULT (TRACK-RESTRK) BY SPT
CALL MULT ;USING MULTIPLICATION UTIL
XCHG ;PUT (TRACK-RESTRK)*SPB IN DE
LHLD CURSEC;GET SECTOR #
DCX H ;sMAKE RELATIVE TO 0, NOT 1
DAD D s HAVE SEC+( (TRK-RESTRK)*SPT))
LDA BLKMSK;GET SPB-1
MOV B,A s STUFFTT IN B
MoV Ayl ;LO BYTE SEC+((TRK-RESTRK)*SPT))
ANA B ;D0 'AND' OP TO FORM BLKDIS
PUSH PSW ;SAVE IT FOR NOW
LDA BLKSHF ;GET LOG2(SPB)
MOV B,A ;FORM A COUNTER IN B

CALP: CALL ROTRHL;DIV. BY 2 USING SHIFT RT UTIL
DCR B ;ONCE PER BLKSHF
JNZ CALP ;TO GET BLOCK NUMBER IN HL
POP PSW ;RETRIEVE BLKD IS
RET

(Note that the utility routines MULT, SUBDE and ROTRHL
are given in Listing 2).

It is sometimes necessary to determine the size of the direc-
tory area of the disk (for memory allocation purposes, etc).
This can be done using the DIRALO and DIRAL1 (directory
block allocation) bytes from the DPB, but it would be better

Lifelines, February 1982



to use the DIRMAX value, since it defines the maximum
usable directory space (which may be less than the space
defined by the allocated blocks defined by ALO and AL1).
Recall that DIRMAX represents the highest numbered direc-
tory entry (with the first entry numbered zero). Since there
are four 32-byte directory entries per disk sector, we can
determine the directory size in sectors as follows:

LHLD DIRMAX;GET MAXIMUM ENTRY NUMBER

INX H ;CONVERT IT TO NUMBER OF ENTRIES
CALL ROTRHL;DIVIDE BY 4 BY SHIFTING RIGHT TWICE
CALL ROTRHL

The routine ROTRHL (given in listing 2) simply shifts HL
right once, effectively performing a divide by two.

We can write a more general-purpose directory sizing rou-
tine, that will return the size in both bytes (let’s use HL for
that) and sectors (in DE) as follows:

DIRSIZ: LHLD DIRMAX;GET MAXIMUM ENTRY NUMBER
INX H ;CONVERT IT TO # OF ENTRIES
PUSH H ;SAVE THIS FOR SECTOR CALC.
MV I A,5 3SHIFT COUNT FOR MULTIPLY x 32
DIRLP1: DAD H sMULTIPLY # OF ENTRIES x 32
DCR A ;5 (ARE 32 BYTES/ENTRY)
INZ DIRLP1; TO GET SIZE IN BYTES
XCHG ;RETURN W/BYTE COUNT IN DE
POP H ;GET # ENTRIES BACK
CALL ROTRHL;DIVIDE NUMBER OF ENTRIES BY 4
CALL ROTRHL; (ARE 4 ENTRIES/SECTOR)
RET 3TO GET SECTOR COUNT IN HL

Our final routine is called NXTSEC, and can be used to in-
crement the current track and sector values. This is useful in
sequential processing, such as disk copying, or searching
the disk for a given string. It uses the current disk address
stored in TRACK and SECTOR, and updates them to the
next sequential disk address. Also used is the maximum
track number (MAXTRK) set up at disk login. It returns the
carry flag set if the end of the disk has been reached, reset
otherwise.

NXTSEC: LHLD SECTOR; SET CURRENT SECTOR

INX H ;BUMP IT ONE
XCHG ;PREPARE FOR (SPT-CURSEC)
LHLD SPT ;FETCH SECTORS PER TRACK
CALL SUBDE ;DO (SPT-CURSEC)
XCHG ;GET NXT SECTOR BACK IN HL
JNC NEXTOK; JUMP IF NO WRAP TO NEXT TRACK
LHLD TRACK ;ADVANCE TO NEXT TRACK
INX H ;BUMP THE TRACK NUMBER
XCHG ;PREPARE FOR (MAXTRK-TRACK)
LHLD MAXTRK;FETCH MAX TRK # (SETUP AT LOGI
CALL SUBDE ;DO (MAXTRK-TRACK)

RC ;END OF DISK, RETURN CARRY SET

XCHG ;NO, GET NEW TRACK NUMBER TO HL

SHLD TRACK

LXI H,0 ;SET O-RELATIVE SECTOR NUMBER
NEXTOK: SHLD SECTOR;SET SECTOR NUMBER

RET ; (CARRY CLEAR IF WE GOT HERE)

Lifelines, Volume II, Number 9

DISCLAIMER

I must point out that certain double-density floppy disk sys-
tems have one or more of the system tracks formatted in
single-density, in order to accommodate boot loaders in
ROM. Further, some controllers may require single-density
formatted disks to have system tracks formatted double-
density, to allow more space for large versions of the
CBIOS. Since CP/M-80 normally never accesses these
tracks, this is normally not a problem. However, programs
that access the disk directly through the CBIOS may not
perform correctly when trying to read or write these tracks.

References
1) These utilities are available from most RCPM systems
around the country:

a. DU.COM - Ward Christensen’s Disk Utility. Cer-
tainly one of the finest programs of its kind available for
any price, and it's FREE! DU allows you to read and write
any sector of the disk, display disk sectors in hex and
ASCII, search the disk for a string, modify sectors in hex
or ASCII, map the directory by block number, position
to block, track and sector, view the disk as a text file, and
many, many others.

b. FINDBAD.COM - by Gene Cotton, originally pub-
lished in Interface Age, September, 1980. This is a disk
test utility that “locks out” bad (unreadable) sectors
found on the disk, and reports its progress on the system
console.

c. SAP.COM -by L. E. Hughes. Sorts and packs the disk
directory. Deletes zero-length files, and re-initializes the
unused directory space to hex E5’s.

2) Certain names of disk parameters are different from what
is shown in the CP/M-80 system alteration guide. I've
done this for clarity; specifically, DRM was renamed to
DIRMAX, BSH to BLKSHF, BLM to BLKMSK, EXM to
EXTMSK, ALO to DIRALO, AL1 to DIRAL1, CKS to
CHKSIZ, and OFF to RESTKS.

Table 1
CP/M 1.4 CP/M 2.0
SPT (byte) SPT (word)
DIRMAX  (byte) BLKSHF (byte)
BLKSHF (byte) BLKMSK  (byte)
BLKMSK  (byte) EXTMSK (byte)
DSM (byte) DSM (word)
DIRALO (byte) DIRMAX (word)
RESTRK (byte) DIRALO (byte)
DIRAL1 (byte)
CKSIZE (word)
RESTRK  (word)
Table 2
BLOCKSIZE SECTORS
IN BYTES PER BLOCK BLKSHF BLKMSK
1024 (1k) 8 3 7
2048 (2k) 16 4 15
4096 (4k) 32 5 31
8192 (8k) 64 6 63
16384 (16k) 128 7 127

(continued next page)

31



Listing 1

s wo we ws w

3

OGIN:

sample disk-login routine...this routine selects the disk in the C
register, determines the operating system version number, and moves

the disk parameters to a local storage area

CALL
PUSH
MVI
CALL
MOV
ORA
POP
Jz

we’re running

V20: MoV

ORA
Jz
MOV
INX
MOV
XCHG
SHLD
XCHG
LXI
DAD
MOV
INX
MOV
MoV
LXI
MVI

MOVDPB: MOV

3

STAX
INX
INX
DCR
JNZ

SELDSK ;login the drive
H ;save result (in case CP/M 2.0)

c,12 ;system "return version'" call

BDOS ;system entry (at CPBASE+5)

AH stest HL=0 (indicates version < 1.4)
L

H sretrieve login result

V14 ;g0 get DPB the 1.4 way

under CP/M 2.x

A,H ;test for HL=0 (select error)
L
SELERR j;select error; branch to an error handler
E,M ;get sector translation table address
H 3 into DE
D,M
;jnow save sec tran table address
SECTBL
D,9 ;remaining offset to DPB address of DPH
D jadd in the offset
AM ;get lo byte of DPB address
H ;point to hi
H,M ;fetch hi byte
L,A ;HL now has pointer to DPB
D,MYDPB ;now move all disk parms to local area
B,15 ;make a counter out of DPB length
AM sjnow move the DPB byte-by-byte
D jinto local storage
H
D
B
MOVDPB

include the following 7 lines of code only if you need to

establish the

ETMAX: LHLD

MoV
MOV
CALL
SHLD
XCHG
SHLD

RET

we’re running

Vi4: LHLD

32

LXI
DAD

maximum track value (maxtrk).

DSM ;FETCH MAXIMUM BLOCK NUMBER
B,H ;MOVE IT TO BC
&L
BLKCNV ;GET IT’S TRACK AND SECTOR NUMBER
MAXTRK ;FIRST TRACK,

;THEN SECTOR
MAXSEC

under CP/M 1.4

6 ;address field of CP/M entry
D,52 ;DPB occurs 52 bytes after entry
D jadd the offset to entry

moving the DPB is trickier under CP/M l.4...many of
the values are BYTE rather than WORD values, and we

have to adjust

MVL D,0 ;get hi byte O to chg bytes to words
MOV E,M ;get byte SPT value

INX H

XCHG

SHLD SPT ;jstore it as a word

XCHG

MOV E,M ;get byte DIRMAX value
INX H

XCHG

SHLD DIRMAX j;store it as word

XCHG

MOV AM

INX H

STA BLKSHF ;BLKSHF and BLKMSK are bytes
MOV AM

INX H

STA BLKMSK

MOV E,M ;get byte DSM value

INX H

XCHG

SHLD DSM ;store as a word

XCHG

MOV E,M ;get DIRALO value

INX H

XCHG

SHLD DIRALO

XCHG

MoV E,M ;and reserved tracks value
XCHG

SHLD RESTRK

JMP SETMAX ;go set maximum track value

H
; the following local storage for the disk parameter
H

block should be included in your data area.

H

MYDPB EQU S jdefine location of DPB

SPT: DS 2 jsectors per track

BLKSHF: DS 1 ;block shift value

BLKMSK: DS ) ;block mask value

EXTMSK: DS 1 jextent mask value

DSM: DS 2 ;ymax block number

DIRMAX: DS 2 ;jmax dir entry number

DIRALO: DS 1 jdirectory allocation O

DIRALL: DS ] jdirectory allocation 1

CHKSIZ: DS 2 jchecked directory entries
2 snumber of reserved tracks

RESTRK: DS
H
; storage for various disk address items

H
TRACK: DS

2 jcurrent track number
SECTOR: DS 2 jcurrent sector number
MAXTRK: DS 2 sjmaximum track number
MAXSEC: DS 2 jmaximum sector number
SECTBL: DS 2 jadrs of CPM2 sector xlate
H
3 END
Listing 2

H
; Utility routines used with direct disk accessing
; programs to do disk arithmetic

cheap (and not extremely efficient) multipication
routine; does HL=HL*DE, using repeated addition.

R v Soiwe

ULT: PUSH B ;DON’T ALTER BC AND DE

PUSH D
XCHG ;SWAP MULTIPLIERS
MOV B,D
MOV C,E ;GET 1ST MULTIPLIER TO BC
MOV A,B ;TEST FOR MULT BY ZERO
ORA C
JNZ MULCON ;JUMP IF NOT MULT BY ZERO
LXI H,0 ;YES, GET QUICK ANSWER
JMP MLDONE

H

MULCON: DCX B. ;ADJUST LOOP COUNT
MOV D,H sMOVE 2ND MULTIPLIER TO DE
MOV E,L

;

MULTLP: MOV A,B ;OUT OF MULT #1?
ORA c
JZ MLDONE ;THEN GO RESTORE AND EXIT
DAD D ;NOPE, DO ANOTHER ADDITION
DCX B ;ADJUST MULTIPLIER #1
JMP MULTLP

MLDONE: POP D ;RESTORE REGS
POP B
RET

H
; subtract de from hl with result in hl

5
SUBDE: MOV

A,L ;DO LOWER 8 BITS FIRST
SUB E ; (IGNORE CARRY)
MOV L,A
MOV AH ; THEN UPPER
SBB D ; (CARRY COUNTS NOW)
MOV H,A
RET

; NEGATE HL (2’S COMPLEMENT)

3
NEG: MOV ANL ;DO IT 8 BITS AT A TIME

CMA

MOV L,A

MOV AH

CMA

MOV H,A

INX H

RET

H
; DIVIDE HL BY TWO (SHIFT HL RIGHT ONE)

;
ROTRHL: ORA A
MOV AH
RAR
MOV
MOV
RAR
MOV L,A
RET

;CLEAR CARRY
;SHIFT UPPER 8 BITS

;THEN LOWER

Lifelines, February 1982

table



Full Sereen Program Editors,

Partl

Ward Christensen

Introduction

This article is the first in a series
reviewing several popular “full
screen” editors. I have specifically
selected those which are more
program-oriented than text-oriented.

Each of us has unique editing needs.
Few people can truly say they do only
“program editing’’. Program
documentation falls more into the text
category. I will thus comment on the
text editing capabilities of the editors,
while not concentrating on this factor.

I have had WordMaster for years, and
more recently obtained MINCE,
VEDIT, and PMATE. These are the
editors I will review. If you have a
favorite editor that’s not among those,
or have seen one you think should be
reviewed, let me know about it via
Lifelines.

Objectives

I will compare and contrast the
editors, and give you a bit more
technical insight into their strengths
and weaknesses than you would get
from reading an advertisement. In
Part I of the review, I will establish
criteria for evaluation. Subsequent
parts will each cover a single editor, in
terms of the established criteria.

Then, having the detailed editor
reviews for background, a final part
will concentrate on comparisons —
how one editor accomplishes
something that another does a dif-
ferent way. This will help you form
your own opinions.

Background

My first microcomputer editor was
the Processor Technology Software
Package Number One, a 4K, 8080,
resident editor and assembler. It
allowed inserting and deleting lines by
line number. Period. It got the job

Lifelines, Volume II, Number 9

done. It served me well for about a
year.

In late 1976, Robert Swartz convinced
me to buy CP/M-80, and “sat me
down” at his CRT to learn ED. [ was
very impressed, and continued to use
ED for about 18 months.

In mid-1978, Chuck Douds suggested I
get WordMaster, a full screen editor
running under CP/M-80. I thought
ED was good enough, but he eventual-
ly convinced me to buy it. Was I glad!
Its command mode was almost iden-
tical to ED, and video mode was very
easy to learn. It was fast, and bug free.

By mid-1981, although I was still very
happy with WordMaster, other
editors began to catch my eye.
MINCE, with its promise of split-
screen multi-file editing, sounded like
what I needed in preparing CPMUG
abstracts. Abstracts are developed
from my personal thoughts, the
author’s own .DOC files, a CPMUG
contribution form, and possibly from
comments at the front of the source
programs themselves.

I began to think about doing a “full
fledged review” of WordMaster,
MINCE, and other editors. I purchas-
ed MINCE, and was completely in-
trigued with its capabilities. I set out to
purchase VEDIT, but the place I talk-
ed to insisted I must buy two separate
full-price licenses, in order to obtain
both a memory mapped, and a CRT
based version.

I subsequently called CompuView,
and found a second license was
available for only a nominal update
fee. They then graciously gave me
copies for evaluation, and in return, I
purchased the $95 upgrade to obtain
the 8086 version.

I contacted Lifelines about doing a
side-by-side editor review, and they
offered to provide an evaluation copy
of PMATE. There have been excellent
reviews of some of the editors: Barry
Dobyn’s review of MINCE in Dr.

Dobbs’ Journal, April 1981; Harris
Landgarten’s review of PMATE in the
April 1981 issue of Lifelines; and
Christopher Kern's review of MINCE
in the September issue of BYTE. I urge
you to consult them for further in-
sight.

Evaluation Criteria

If you were to judge an editor, there
would be only one important
criterion: do you like it or not. That
however does not make for an in-
teresting and informative review. It
also does not account for “taste” —
my likes and dislikes are certainly not
identical to anyone else’s.

Here are the criteria I feel are impor-
tant in selecting an editor. They are
the ones I will refer back to in the in-
dividual editor evaluations.

Subjective Criteria

DOCUMENTATION: The documen-
tation should serve four purposes: (1)
an installation guide; (2) an introduc-
tion for the beginner; (3) a learning
tool for the advanced user; and (4) a
reference manual.

SPEED: Although this is not the ulti-
mate criterion, the editor should not
“slow you down”. It should take ad-
vantage of “modern’” terminal
characteristics, such as line insert and
line delete. This significantly im-
proves usability.

ERGONOMICS: It should be “com-
fortable” to use. There should be no
“frustration” introduced by using it.
Frequently used functions should not
make you feel you are performing
“finger exercises”.

CONFIGURABILITY: It should be
able to be modified (1) for a variety of
terminal types; (2) for different
keyboard layout preferences. The lat-
ter is not mandatory, but it is nice to
be able to configure the editor to your
preferences.

(continued next page)

33



EASY TO LEARN: If you have to keep
referring back to some manual, you
just won't be productive. When you
do refer to the manual, it should be
easy to go right to what you were
looking for.

Objective Criteria

Video related criteria

FULL SCREEN: Move the cursor
about the screen, both in entry mode,
and for making corrections.

SCROLLING: Move up or down
within the document, line by line, or
screen by screen. If the file doesn't all
fit in memory, it should still “appear
to”, with automatic disk buffering.

INSERT: “Squeeze” in characters or
lines in, without explicitly having to
“open up” space for them first.

OVERTYPE: Move to a mistake, and
overtype the correction.

UNDO-KEY. (Sometimes called the
“OH #%$%&" key). If you have ac-
cidentally deleted a line, or block, it is
nice to be able to undo the delete. This
serves a double purpose of being an
easy- to-use “move” command, since
you can delete something, position the
cursor elsewhere, and bring it back.

REPEAT KEY: The key you press
following the repeat key will have its
action repeated several times. The
repeat key lets the editor do some of
the work for you when youwant to do
something simple over and over, such
as move down several lines, or insert
multiple lines.

TEXT EDITING ABILITIES: Not
critical to program editing, but men-
tioning these capabilities will help you
judge which editor best suits your mix
of editing requirements.

The simplest editor can probably per-
form word tab and back tab, and
perhaps word delete.

Command related criteria

MOVE: Readily moving the pointer to
where youwant to be in the file, by go-
ing ahead or back some number of
characters or lines.

DELETE: Delete characters or line,

34

ahead or back. A block marking and
deleting mode is most helpful.

INSERT: Add characters, including
CR/LF combinations.

TYPE: Allow you to “follow the pro-
gress”’, or see the results of your
changes. For a fast memory mapped
terminal, the update may even be
shown full-screen.

FIND: Find character strings, such as
to locate a label, etc.

CHANGE: Make non-video changes,
such as to change all occurrences of a
particular label, to something else.
This is better done in a “command
mode”, rather than having to search
for, and change, all the strings in video
mode.

MOVE and COPY: Allow moving or
copying some arbitrary part of a file to
another place in the file. Useful, for ex-
ample, when two subroutines are
quite similar, and it would save lots of
typing to be able to make a copy of
one, and just change the parts that
need it.

Moving and copying should ideally be
done by “marking” the text in some
way.

COMMAND STRINGS: Putting to-
gether all the above abilities into “little
programs”. Preferably, each of the
above commands should be able to be
modified by a number, such as to find
the third occurrence of something, or
to move down 27 lines. Furthermore,
the command strings should have an
overall repeat ability, either limited,
or unlimited. Nesting, in which you
say “I want to do such-and-such 4

times, and within that, something
else, 7 times”, should be supported.

MULTIPLE EDITS: If you have a lot
of edits to do, it is nice not having to
exit the editor, only to re-execute it for
some other file.

File related criteria

BACKUP: The editor should create
backup copies of what you are editing,
so that if you later realize you have
made a major mistake, you can erase

the new version and rename the .BAK
file.

The backup file ability should have
some means to compensate for its size,
such as allowing it to be placed on
another disk.

SAVE: Write your changes back to
disk, and continue editing.

QUIT: Give up if you have made a
gross mistake. The editor should pro-
bably prompt you to ensure you really
meant to quit.

READ: Bring in all, or preferably, a
piece, of another file.

WRITE: Write out some piece of the
file being edited, to another file.

DIRECTORY: Access to the CP/M-80
directory is helpful. For example, you
may want to read in part of another
file, but can’t remember its name.

It would also be nice to erase files (to
make room), and perhaps to even log
in a new disk, or change disks to get at
some piece of data on a disk that is not
on line.

722-1700.

INDEX

An index of all Lifelines/The Software Magazine articles through December
1981 is now available for your reference use. Comprehensive and easy to
read, it helps you locate those special items you need to re-study. The price
for the 1980-1981 index is $2.50 (June 1980-December 1981), all inclusive;
but we recommend that you also subscribe to the index for a full year. The
price for 1982 will be $2.50; you will receive four three-month installments for
that price. (In December 1982 another comprehensive index will be offered.)
So for $5.00 you can be up to date and keep up to date for the next twelve
issues. This price will be in effect for a LIMITED TIME ONLY, so order now.

All orders must be prepaid, by check, MasterCard, or VISA. Checks must be
in U.S. Dollars, drawn on a U.S. bank. Write for your index, or call (212)

Lifelines, February 1982



Gift Subscriptions

You should consider gift subscriptions to Lifelines/The Software Magazine for your friends and relatives
who are involved in microcomputing. As you probably realize from your own experience, the price of a
subscription is small for the money Lifelines can save you in a year. Just send a check or credit card
number and fill out the form below*. (Or call [212] 722-1700.) We'll send your gifted one a note to let them
know of their good fortune, and we'll send you a free Zoso T-shirt. (Don't forget to tell us your size.)

Your name and address: The name and address of the gifted one:

Name Name

Address Address

City State Zip City State Zip

Shirt size i

[] Check enclosed *All orders must be prepaid by VISA, MasterCard
VISA or MasterCard Number orcheck. Checks mustbein U.S. $,drawnona U.S.
Expiration Date bank. Subscription rates are $18 for twelve issues

(oneyear) when the destinationisthe U.S., Canada,
or Mexico. For subscriptions going to all other coun-
Signature (if payment is by credit card) tries, the price is $40 for twelve issues.

KIBITS

AP S

THAT'S THE LAST TIME
o | GO TO BED wiTHouT
A BACKING UP MY

FLOPPY/

Lifelines, Volume II, Number 9 ) 35



T/MAKER II: A Continuing Review r.uouj.sooi

The first article in this series presented
a background on T/MAKER II, some
of the initialization steps (and prob-
lems) that surfaced when I began to in-
stall T/MAKER Il on my CP/M-based
system, and highlighted some of the
functions, utility files and possibilities
for applying this product.

This particular article presents some
of my initial observations and conclu-
sions after having gone through the
Tutorial section of the T/MAKER II
manual followed by creation of sev-
eral files that utilized both text editing
and data calculating features and
functions of T/MAKER II.

Examining T/MAKER II as a tool for
accomplishing tasks that would nor-
mally require sophisticated word pro-
cessing and/or extensive experience in
writing programs in BASIC has con-
vinced me of its having powerful fea-
tures that should be pointed out to
anyone who is going through any de-
cision-making process, or who is in a
quandary as to what software package
to consider for a system. Perhaps you
will be convinced to try T/MAKER II
after noting several particularly signif-
icant findings I have discerned from
my usage of T/MAKER II to date:

1. T/MAKER II (version of 2.3.2. of
T/MAKER) incorporates a text editor
that proves to be essentially compati-
ble with those found in either MAGIC
WAND or WORDSTAR. (Carriage
returns embedded in the text do have
to be removed when justified text or a
different page width is called for,
namely one greater than that used in
creating the original working file.
Otherwise, the associated print for-
matting commands will not be able to
function as desired for either software
package. Fortunately, this task is a
rather simple one to implement on any
T/MAKER based file.) In short,
Working Files created with
T/MAKER II can be processed by two
outstanding word processing “pack-
ages” when you want to incorporate
the files of T/MAKER into either
word processor.,

36

Moreover, this process works in the
other direction as well. If you, for ex-
ample, have computations to make on
a file you created some time ago and
for which the data, rates, etc. have
changed, you can edit the file — now
embedding the appropriate T/MAKER
II Symbols, Example Line, Zero Val-
ues Line, Row Equations, Column
Equation Control Codes, etc. — and
be able to generate an updated file
complete with computations. More-
over, you can create MASKS which
are files that are used by the LOAD
and UNLOAD functions of T/MAKER
II to either load a complete DATA File
into a Working File, or to Unload a
Data File from a Working File. You
can even COMBINE Tables of Data in-
to a new File. You no doubt can see
how extremely powerful a tool
T/MAKER II can prove to be. That an
individual need not be a sophisticated
programmer to quickly put this prod-
uct to use is the very best feature of all.

2. T/MAKER II offers, in general, the
easiest-to-use editor from among sev-
eral that I have used. This includes the
three CP/M-based editors: MAGIC
WAND, WORDSTAR, and the
ED.COM utility file; an early day
utility called TED that was associated
with K2FDOS; and also an editor that
was incorporated in a Signetics’ TWIN
microprocessor development system
that was nearly identical to that found
in Tektronix 8002 development sys-
tems. In short, T/MAKER II has
downright spoiled me, at least when-
ever the application or task entails just
slightly more than straightforward
word processing! Example of these
situations include numerical/charac-
ter movement and/or sorting, or com-
binations involving calculations and
movements of columns, etc. Of
course, there are some minor inconve-
niences to be noted, but they are far
outweighed by the numerous power-
ful capabilities that are generally
available simply by entering particu-
lar keystrokes. Oh yes, even the key-
strokes can be user-defined.

3. Table of readily formatted calcula-
tions along with associated headings

and any desired supporting text are far
and away much easier to create and to
modify than would be possible using
the conventional BASIC program-
ming approach. Consider the follow-
ing facts: 1) You can actually SEE (and
even store away as separate files on
diskette) any initial, intermediate,
and/or final Table layouts that you do
create. By comparison, if you did this
same task using BASIC language, you
would have to create (and, therefore,
thoroughly understand) a detailed
program using BASIC to accomplish
the same end result. Of course, know-
ing how to use BASIC required you to
document, debug, and mentally con-
vert your line after line of BASIC REM
statements, DATA READ (statements,
PRINT x number of spaces, etc., DO
LOOP arrangements (including the
assigning of index variables, etc. etc.)
until you thought you had something
that would work. Then you would go
through a trial-and-error testing pro-
cess. And so it would go.... HOW
BORING anyway!! 2) Not only can
you define the layout but also the
types and sequences of calculations to
be made can be readily changed using
the editing functions of T/MAKER II.
3) You can also use the MASK func-
tion to either LOAD or UNLOAD
data associated with a created file. 4)
Six conditional COMPUTE categories
can be specified for controlling col-
umn equations. These range from “al-
ways compute” through “just com-
pute” and even to “suspend compute”.
5) Reasonable short setup times for
creating tables—even when the table
is of moderate complexity should be
achieved by a T/MAKER II user. For
once he has performed even a few rela-
tively simple examples or created
some relevant sets of tables, be they
simple checkbook balancing, an
alphabetical or numeric sorting, com-
bining of two or more sets of data,
cash flow analyses, etc. the user will
become quite at home with the meth-
odology of T/MAKER II. He will find
that T/MAKER II will allow him to
quickly yet effectively solve, docu-
ment, and report and/or retrieve re-
sults as needed.

Lifelines, February 1982



4. Yes, some negatives to T/MAKER
II's Editor that might appear as over-
sights are the following: absence of
both “delete word to the right of the
cursor” and “move cursor to the left
one word” commands, inability to
provide a “characters-per-inch” com-
mand that T/MAKER II could use as
in conjunction with a printer (such asa
Diablo, Qume, or NEC unit) having
proportional printing capability, and
no PUT command that allows you to
output a portion of the Working File
to a diskette, and to an awkwardness
in trying to use a JOIN/BREAK LINES
procedure to achieve phrases that re-
main within one FRAME (another
mode that you will enjoy having as a
working tool when large tables of data
have to be manipulated!).

That these specific commands may or
will be incorporated in subsequent
revisions of T/MAKER II need not be
of immediate concern, however. For,
would you believe, some user gener-
ated solutions could be implemented

as intermediate cures for at least some
of these negative findings?

For example, by using easily created
MACROS, a “FIND AND REPLACE
string” could be made by combining
the already existing “FIND string” and
“REPLACE string 1 string 2” com-
mands. Such a macro could be added
as a “filename.MAC” file to the
T/MAKER II ‘working diskette’ file li-
brary, and it could be INSERTed into
the Working File as a "“GET
filename.MAC” instruction.

The highly desirable proportional
printing feature could be achieved if
you happen to employ either WORD-
STAR or MAGIC WAND in your nor-
mal word processing activities. For ex-
ample, if you so desire, you could edit
the T/MAKER-generated file using
one of these two word processing sys-
tems and embed the appropriate
printer characters-per-inch
command(s) in the now “hybridized”
T/MAKER-generated file. Or, you

might consider issuing the desired
printer-related command(s) immedi-
ately prior to actual print operation
initiation. The latter approach keeps
the T/MAKER-based file ‘clean’ and
readily usable by numerous word pro-
cessor “packages”.

5. Still more features worthy of men-
tioning are AUTOPAGE, INSERT,
and FRAME MODES, but these will
have to wait for another time for
description. REDRAW SCREEN,
GLOBAL REPLACE, and display
WORKING FILE INFORMATION
are other capabilities that must wait
for another day . . . .

LOOKING AHEAD

Practical examples and illustrations of
some of the powerful operations avail-
able in T/MAKER II will begin with a
forthcoming article in this series.

C-bits (A1l About BDS C

version 1.45)

Reported by Bill Norris

And here’s the bit-map: 1) bug fixes, 2) new features, 3) new
linker, 4) sieve.doc.

Bug Fixes appear under New Versions in this issue.
New Features

CLINK will now recognize DEFF3.CRL as an automatic
library file (not included). Use it for your custom functions,
as DEFF.CRL and DEFF2.CRL are getting to be rather full.
CLINK will now search all 3 DEFFfiles (if they exist) if a car-
riage return is typed in interactive mode. Previously, only
DEFF.CRL was searched.

The special case handler for the code generator has been im-
proved to more efficiently handle binary relational opera-
tions where exactly one of the operands is a constant. The
operators affected are:"<”, “>", "< =", “>=""==",
and “I=",

Two new functions have been added to the standard
library:

int setjmp(buffer)
char buffer[JBUFSIZE];

longjmp (buffer,val)
char buffer[JBUFSIZE];

Lifelines, Volume I, Number 9

When “setjmp” is called, the current processor state is saved
in the JBUFSIZE-byte buffer area whose address is passed as
the argument (“JBUFSIZE" is defined in BDSCIO.H), and a
value of zero is returned. Whenever a subsequent “longjmp”
call is performed (from ANYWHERE in the current function
or any lower-level function) with the same buffer argument,
the CPU state is restored to that which it was during the “set-
jmp” call, and the program behaves as if control were just
returning from the “setjmp” function, except that the return
value this time is “val” as passed to “longjmp”. A typical use
of setjmp/longjmp is to exit up through several levels of
function nesting without having to return through EACH
level in sequence, to make sure that a particular exit routine
(e.g., the directed I/O “dioflush” function) is always per-
formed.

A New Linker

A new linker for BDS C called “L2” (a substitute for
CLINK.COM) is now available from the BDS C User’s
group. L2, written by Scott Layson (of Mark of the Unicorn)
in BDS C, has several interesting features:

L2 can link programs that are up to about 8K larger than
CLINK: if there isn’t enough room in memory to hold the
entire program while building an image in memory, L2 per-
forms a disk-buffering second pass. This means that the

(continued next page)

37



resulting COM files can be as large as the entire TPA on the
target machine.

The number of functions per program is no longer limited to
255. While CLINK uses jump tables at the beginning of func-
tions, L2 totally eliminates the jump tables and instead
generates direct external call. This shortens programs by
anywhere from 3%to 10% ,and also speeds them up a little.
Since the L2 source code (in C) is included, you can
customize it yourself.

The L2 package also includes an overlay generator and
documentation. It is available to BDSCUG members for the
nominal cost of media and shipping (currently $8).
BDSCUG members receive a newsletter approximately 6
times per year, and are entitled to compiler updates and
library disks for low prices (typically 8%/disk). For informa-
tion, contact: BDS C User’s Group, Robert Ward, Coor-
dinator, Dedicated Micro Systems, Inc. 409 E. Kansas Yates
Center, Kansas 66783 (316) 625-3554.

SIEVE.C is included with the new version (1.45). This is the
Sieve of Eratosthenes benchmark from BYTE, Sep. ‘81, pg.
186. This program is a bit cryptic, and as the output ap-
peared incorrect, and a copy of the Sept. 81 BYTE was not
immediately available, I called Leor Zolman, who promptly
checked it out, found it to be correct, and deciphered it. A
fragment from the program and explanations is shown in
Figure 1 below.

The DEFINE statements indicate that the search for primes
will be made for numbers up to TWICE the value specified
in the DEFINE statements. The array elements of flags[] map
onto the actual numbers as follows:

0=3,1=5,2=7,3=9,...

So, to print out the results (ODD primes), the following can
be added to the end of SIEVE.C:

for (i = 0; i<=SIZE; i++) {
if (flags[i]) {
printf("\n#%d = %d found to be prime."”,i,i*2+3);
}

}

Change of Address

Please notify usimmediately if you move. Use the
form below. In the section marked ‘“Old
Address”’, affix your Lifelines mailing label — or
write out your old address exactly as it appears
on the label. This will help the Lifelines Circulation
Department to expedite your request.

New Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

Old Address:

NAME

COMPANY

STREET ADDRESS

CITY STATE

ZIP CODE

#define SIZE 8190,
#define SIZEPL 8191

count = 0;
flags[i] = TRUE;

if (flags[i]) A
prime =

LISTING OF SIEVE.C

for (i.=0; i <= STZE;. i++)
for (i = 0; i <= SIZE; i++) {

i+i+3;
k = i + prime;

while (k <= SIZE) {
flags[k] = FALSE;
k += prime;

}

count++;

That's all folks...

38

Lifelines, February 1982



New Versions

BDS C Compiler
Version 1.45

Here are the bug fixes and extensions
available in this update.

1. Expressions of the form

I(expr|| expr)
or !(expr && expr)
may not have worked correctly
when a VALUE was required for
the expression; i.e., when used in
some way other than in a flow
control test. For example,

x = l(all b);
might have failed, but

if (1(a|lb)) return 7;
would have worked, since the ex-
pression was used for flow con-
trol.

2. Declarations of pointer-to-func-
tion variables for functions re-
turning a CHARACTER value
caused only one byte of storage to
be reserved for the pointer, in-
stead of two bytes (all pointers-to-
functions require two bytes of
storage, by virtue of being point-
ers). For example, in the sequence:

char c1, (*ptrfn)(), c2;

ptrfn = &getc;

the assignment to ‘ptrfn’ would
have incorrectly overwritten the
‘c2’ character variable, since only
one byte would have been re-
served on the stack for the ‘ptrfn’
variable while the assignment
operation would have assumed
there were two bytes reserved.

3. A bug in the ternary operator
evaluator (7: expressions) caused
the high-order byte of a 16-bit
result to be incorrectly zeroed in
the following situation: given a
ternary expression of the form

el 2e2:e3
where ‘e2’ evaluated to a 16-bit
value (int, unsigned or pointer)
and ‘e3’ evaluated to a character
value (type char only), the entire
expression was treated as having
type char...so if ‘e1’ was true and
‘e2’ was bigger than 255, then the
value of the expression ended up
as only the low-order byte of the
value of ‘e2’. For version 1.45,

Lifelines, Volume II, Number 9

whenever ‘e2’ and ‘e3’ do not
BOTH evaluate to character
values the type of the overall ex-
pression is guaranteed not to be
char.

. Asequence of two '!" (logical ‘not’)

operators in a row did not always
produce the correct result in an ex-
pression. For example,

x = lln;
(convert n to a logical (0 or 1)
value) might have produced the
wrong result (0 instead of 1, or
vice-versa).

. A stack-handling bug in CC2

caused problems at run time when
a sufficiently complex sub-
expression appeared in any but
the final position of an expression
involving the comma operator
(“,”). For example, the following
statement would not have worked
correctly:

for(i=0;;i<10;x +=vy,i++)...

. CC1 has not been recognizing il-

legal octal character constants as
such; digits such as ‘8" and ‘9’
within an octal constant will now
draw an error in cases where they
would have been ignored before.
Also, certain other forms of illegal
constants (aside from character
constants) are now better diag-
nosed than before.

. One more case has been found

where an internal table overflow
during code generation was not
detected, causing the final com-
mand file to bomb as soon as it
was executed (either by crashing
the machine or immediately re-
booting.) This occurred when a
single large function containing
many string constants was com-
piled. All fixed now.

. The TQ-CR sequence required by

CLINK in interactive mode (to
abort the linkage in progress) can-
not be typed in under MP/M sys-
tems, since TQ is used to detach a
process. If you are running
MP/M, then just type control-C
instead of TQ-CR; this will also
work for CP/M systems...the on-
ly difference is that when TQ-CR is
used, then any currently active
“submit file” processing is auto-
matically aborted by CLINK be-
fore returning to command level,
as a convenience. Under MP/M,

10.

it is necessary to type characters
quickly at the keyboard (after
1C-ing CLINK) to abort any pen-
ding submit file activity.

. Aslight bugin CLIB.COM (The C

Library manager program) made
it hard to exit CLIB from within a
submit file (assuming XSUB is in
use). The problem was that CLIB
requires a confirmation character,
'y', to be typed after the ‘quit’
command is given. CLIB was get-
ting the confirmation character by
doing a single direct BDOS con-
sole input call, which required the
user to manually type in the letter
before any pending submit file
processing could continue. This
has been fixed by having CLIB get
an entire line of input (using
BDOS call 10) when seeking a
confirmation; now the ‘y’ may be
inserted into submit files. Note
that the ‘quit’ command and the
'y’ confirmation must be placed
on separate consecutive lines in
the submit file. If not using a sub-
mit file, the only difference is that
now a carriage-return is required
after typing the ‘y’.

Another minor problem with
CLIB: function names longer than
8 characters were not being trun-
cated when entered for operations
such as renaming, resulting in too-
long CRL file directory entries.
All names are now properly
limited to 8 characters.

A problem with file I/O under
MP/M Version II has come up:
The run-time package routine
“vclose”, called by the library
function “close” whenever a file
needs to be closed, has been op-
timizing for files open only for
reading by not actually perform-
ing a “close” operation through
the BDOS. This worked fine
under CP/M, because CP/M
didn't care whether or not a file
that has had no changes made to it
was ever closed; MP/M II, on the
other hand, does seem to want
such files to be explicitly closed;
so by running many programs
that didn't close their Read-only
files, BDS C programs eventually
caused MP/M to not allow any
more files to be opened.

This problem has been fixed by
adding a conditional assembly

(continued next page)

39



11.

12.

13

14.

40

symbol, called “MPM2"”, to the
CCC.ASM source file. If you are
running under MP/M 1I, you
should set the “MPM2" equate to
true (1) and reassemble CCC.ASM,
yielding a new C.CCC after load-
ing and renaming (you should on-
ly need ASM.COM for this, al-
though MAC.COM works also).
The change does not affect the size
of C.CCC, so the libraries do not
have to be reassembled as is usual-
ly the case when the run-time
package is customized. The
change simply causes a single con-
ditional jump to be turned into
three nop’s, so that all files are
always closed, instead of only the
ones open for writing.

A bug was found in the ‘—scn’
library function (affecting
‘scanf’): when a lone carriage-
return (newline) was typed in
response to a “%s"” format con-
version, the format conversion
was totally ignored. This caused
the target string to remain un-
changed from its previous con-
tents, instead of correctly having
a null string (consisting of a single
zero byte) assigned to it.

A bug was found in the ‘—spr’
library function (affecting ‘printf’,
‘sprintf’, and ‘fprintf’): The
default field width value was 1,
causing a null string to be printed
as a single space when the stan-
dard “%s" format conversion was
used. For example, the statement:

printf(“Here is a null string:
\"%s\"\n","");

would have produced the output:
Here is a null string: “

instead of:

Here is a null string:
The default field width value has
been changed to 0, so null strings
will now print correctly. An ex-
plicit field width may always be
given in any format conversion,
of course.

e

When the library function
“sprintf” (formatted output di-
rectly into a memory buffer) is us-
ed, a null byte is appended onto
the end of the output text.

In several library functions, as
well as at one point in the run-time
package, calls were made to
BDOS function number 11 (inter-

15.

16.

rogate console status) followed by
an “ani 1" instruction to test bit 0
of the value returned by BDOS.
On some systems, testing bit 0 is
not sufficient since sometimes
values other than 0 and 1 (or 0 and
255) are returned. So, all such se-
quences have been changed to do
an “oraa” instead of an “ani1”, so
that a return value of exactly 00h
is interpreted as “no character
ready” and any other value is in-
terpreted as “yes, there is a char-
acter ready”. The library func-
tions that were modified this way
are: 'kbhit’, ‘putchar’, ‘srandl’,
‘nrand’, ‘sleep’ and ‘pause’. The se-
quence to clear console status in
the run-time package (CCC.ASM),
near the label “init:”, has likewise
been changed (but a “nop” in-
struction was added to keep all
addresses consistent with earlier
versions of the run-time package.)

When customizing the run-time
package (CCC.ASM) with the
“cpm” symbol equated to zero,
several symbols (named “SETNM"
and “SETNM3”, at the routine
labeled “PATCHNM") were un-
defined; this has been fixed by
adding some conditional assem-
bly directives to insure that the
labels in question are not refer-
enced under non-"cpm” imple-
mentations, while the total code
size remains constant so that the
addresses of later run-time
package utility subroutines stay
exactly the same for all implemen-
tations.

A problem with the “bdos” library
function has come up that is
rather tricky, since it is system-de-
pendent: A program that runs
correctly under a normal Digital
Research CP/M system might not
run under MP/M or SDOS if the
“bdos” function is used. A typical
symptom of this problem is that
upon character output, a charac-
ter on the keyboard needs to be hit
once in order to make each char-
acter of output appear.

Normal CP/M behavior (which
the C library function “bdos” had
always assumed) is for registers A
and L to contain the low-order
byte of the return value, and for
registers B and H to contain the
high order byte of a return value
(which is zero if the return value is

17.

18.

19.

only one byte). The CP/M inter-
face guide explicitly states that “A
== L and B == H upon return
in all cases”. Justin case CP/M 1.4
or some other system doesn’t put
the values in H and L from B and
A, the “bdos” function copy
register A is put into register L and
copy register B into register H, to
make sure the value is in HL
(where the return value must
always be placed by a C library
function.)

Not all systems actually follow
this convention. Under MP/M, H
and L always contain the correct
value but B does not! So when B is
copied into H, the wrong value
results. So, the way to make
“bdos” work under both CP/M
2.2 and MP/M was to discontinue
copying Band A intoHandL, and
just assume the value will always
be correctly left in HL by the
system. This was done for v1.45.

The way I left “bdos” for version
1.45 was so that it works with
CP/M and MP/M (i.e., no
register copying is done at
all...HL is assumed to contain the
correct value). This, of course,
won't work in all cases under
SDOS and perhaps other systems
...in those cases, you need to
either use the “call” and “calla”
functions to perform the BDOS
call, or create your own assembly-
coded version(s) of the “bdos”
function (with MAC.COM,
CMAC.LIB and BDS.LIB) to per-
form the correct register manip-
ulation sequences for your sys-
tem. Note that it may take more
than one such function to cover all
possible return value register con-
figurations.

The “creat” library function had
been creating new files and open-
ing them for writing ONLY; this
caused some confusion, so ‘creat’
has been modified to open files for
both reading and writing follow-
ing creation.

The “execv” function has been
changed to return ERROR (-1) on
error, instead of forcing an error
message (“Broken pipe”) to be
printed to the standard error
device.

The DIO (directed I/0 and pipes)

Lifelines, February 1982



package contained an obscure
bug: if a pipe operation was
aborted before completion, leav-
ing a “TEMPIN.$$$" file in the
directory, then the next pipe
operation performed had gotten
its own output mixed up with the
output of the aborted pipe...the
old output was used as input to
the new next command, and the
new output was lost. The new
DIO.C has been fixed. (Note:
DIO.C has also been slightly
changed to properly interact with
the new version of the “execv”
library function.)

Another change has been made to
the DIO package: the “getchar”
function, when used without in-
put redirection to read characters
directly from the console, had not
allowed for line editing in pre-
vious versions. Each character
was obtained by a direct BDOS
call and none of the special line
editing characters (delete, 'R, 1U,
etc.) were recognized. For version
1.45, an optional line buffer
mechanism has been added to the
DIO package so lines of console
input can be fetched at one time
by using the “read console buffer”
BDOS call and all editing char-
acters now function as expected.
Operation of the package using
buffered console input is still the
same as before, except for one
thing: to enter an end-of-file
character (control-Z), it is now
necessary to also type a carriage-
return after the control-Z.

To enable console input buffering
when using the DIO library, it is
necessary to un-comment a line in
the DIO.H file and re-compile
DIO.C.

CP/M baZic 11
Version 3.03

Version 03/03 of CP/M baZic has
now been released. This version fixes
several bugs or problems that were
found in 02/02. In addition, a new
feature has been added.

CP/M baZic now has a new function
which is called CPMEN (CP/M Func-
tion). This function has been added to
allow the baZic programmer to call
any of the CP/M system function
calls. The command syntax is:

Lifelines, Volume II, Number 9

T=CPMFN(<C ARGUMENT >
[, <DE ARGUMENT > ]

The function is called (This should ap-
pear as one line with a space after
"< C ARGUMENT>.”) by passing
the function number as the first argu-
ment to the function call. The function
numbers are listed in the back of most
CP/M documentation manuals. The
value passed as the first argument will
be “inserted” in the C register when the
system call is made.

Many system calls require a second ar-
gument which is passed to the DE reg-
ister pair. This argument is optional to
the CPMEN, but if the system call re-
quires a second argument, you must
include this value in the CPMFN call.

When the function returns, the vari-
able set equal to the function call (T in
the example) will be equal to the value
of the HL register pair.

The CREATE statement now creates a
dummy file the size of the size vari-
able, if it is specified. This means that
the space specified in the CREATE
statement is reserved on the disk when
the CREATE statement is executed.

baZic now updates the file directory
when a program is exited. Previously,
under some conditions, the file direc-
tory was not updated, leading to er-
rors in the files.

baZic files can now be CLOSEd
without previously OPENing the file.

The implementation of the cursor po-
sitioning and clear screen statements
has been changed at the beginning of
baZic to allow more CRTs to be con-
figured. Two modes are now sup-
ported for setting the cursor address-
ing and clear screen sequence. At the
beginning of the cursor addressing and
clear screen sequence is a byte which
controls the mode. If the byte con-
tains a OFFH, baZic will assume a
machine language routine is in place
starting at the next location after the
mode byte and will jump to this loca-
tion and execute the code located
there.

If the mode byte is any other value,
baZic will assume that the byte repre-
sents the number of codes to output
and will output that number of bytes,
starting with the first byte following
the mode byte. The string of codes in

this mode must end with a “$" code (36
Decimal or 24 Hex). The SOROC op-
tion of the CRT program uses this
mode while all other terminals in the
CRT program use the first mode.

The HAZELTINE option uses the first
mode described but is slightly dif-
ferent in that the HAZELTINE re-
quires the cursor addressing codes be
issued column,row whereas most
CRTs require a row,column sequence.
This sequence is changed for the
HAZELTINE option by reversing the
bytes at location 0131H and 0138H.
The MOV E,L instruction at 0131H is
changed to a MOV E,H and the MOV
E,H at 0138H is changed to a MOV
3,L. This reverses the order the cursor
addressing codes are output.

The CRT program must be run on a
“virgin” copy of baZic as delivered on
the master diskette. You cannot con-
figure a copy of baZic for the SOROC
and then run CRT again to configure
the same copy for a Z19. You must use
a copy from the master diskette to
configure for each different CRT you
might have.

Datapoint CP/M-80
Version 2.21

Version 2.21 of Datapoint 1550 CP/M
provides the following fixes and en-
hancements over version 2.20.

1. Datapoint printers with hardware
handshaking are now supported.
Choose the HARDWARE HAND-
SHAKING option in CONFIG as
well as selection of 9600 baud for
port ‘B’. Plug your Datapoint sup-
plied cable into comm port 2, which
is the lower socket on the back of
your machine. This should fix any
problem you've been having with
your printer.

The hardware handshaking option
checks three signals on the comm
port. CTS (pin 5) and DSR (pin 6)
are level-activated handshaking
pins; that is, if either or both of
these lines are low, transmission
ceases. DCD (pin 12) is a pulse-
activated handshaking signal.
When a character is received by the
printer a DCD pulse is sent back
once the character is accepted.
When the buffer is full, an acknowl-
edgement is not sent back until
there is enough room in the buffer

(continued next page)

41



to accommodate further charac-
ters. It should be noted that while
CTS and DSR must be high for any
characters to be sent out, the user
need not supply the DCD signal for
correct operation.

If the user employs a device that
does not provide hardware hand-
shaking he must jumper pins 5 and
20 on the machine since the Data-
point hardware will not allow
transmission of any characters
without a high level on the CTS
pin.

All the techniques described above
apply equally to comm port 1;
however, the user should note that
because of its hardware characteris-
tics, in addition to all of the above
considerations, the user must sup-
ply both the XMT clock (pin 15)
and the receive clock (pin 17) at 16
times the desired baud rate.

The INSERT/DELETE Line func-
tions of the ADM-31 emulator
caused the system to crash if these
functions were performed on the
last line. This bug was fixed.

The inverse video functions of the
ADM-31 emulator were set to
<ESC> ‘A’, and <EDC> B’ to
respectively turn on and off the in-
verse video function. The present
version changes these sequences to
<ESC> ‘)’and <ESC> ‘(" which
are those used on the ADM-31.

Certain often used keys in CP/M
were not very accessible to the user,
thus they were moved to more con-
venient locations. The ‘box’ key on
the main keypad (second row from
top, all the way to the right) was
changed so that its unshifted value
produces a TAB (1]) and its shifted
value producesa‘~’. The margin re-
lease key (main keyboard, top row,
second from the right) produces a
DEL (7F hex) code in the non-
shifted mode, while the shifted key
produces a backslash ("\’).

The interrupt service routines, the
routines used to handle such things
as reading the keyboard and dis-
playing characters on the CRT, em-
ployed a technique that would not
allow certain programs to run. An
example of such programs were
programs compiled with PAS-
CAL/Z. We are now employing a
different technique in these routines

that fixes these problems.

6. The cursor has been changed to
simply display the character under
it as the inverse (black on white
becomes white on black) of the
character in the cursor position.
This makes the cursor easier to see
and allows the user to see what's
under the cursor.

7. A number of users have had some
problems installing our two data
communications programs BSTAM
and BSTMS on their Datapoint ma-
chines. After some experimentation
we can recommend the following
installation procedure.

A.Use Comm port 2. The cable
you use must either provide
CTS or you must jumper pins
5-20 on your Datapoint.

B. Assemble the UDATAPT.ASM
file supplied on your BSTAM or
BSTMS distribution disk.

C.Install the resulting
UDATAPT.HEX file in your
communications program(s) as
per the instruction in the man-
ual.

D. Using CONFIG, set port ‘B’ to
‘NO PROTOCOL'

E. Also using CONFIG, set the
BAUD RATE to the same rate as
the machine you wish to com-
municate with.

SELECTOR IV
Version 2.17

Any line, page or batch definition
prior to Version 2.15 will not load
with this version and must be rede-
fined. GLector IV must be upgraded to
Version 2.15 to interface with this ver-
sion’s main menu.

All .DEF files as well as the
DEMO.-PAG (page report
demonstration), have been initially
defined expecting all .DEF, .DAT and
.KEY files to be on drive A. If they are
PIPped to another drive the defini-
tions must be modified.

The internal name of ‘.DEF’ files is no
longer used, so that if the ‘.DAT’,
‘ KEY’, and ‘.DEF files are all renamed
with the same new name prefix, the
new name will be recognized.

The system may now be run from any
drive. Erase any existing TERM.DAT
and re-implement the system param-
eters. The only parameter actually
changed is the operating system type
(CP/M...) which is suffixed now
with the program drive letter (e.g.
“2E" vs.527).

Be sure to include the drive declara-
tion when entering the name of a re-
port, batch, etc. definition file after a
merge operation, otherwise, a “not a
correct definition” error message may
be generated.

Subtracting a date from a date should
return the number of days for dates
within 89 years of each other. Remem-
ber to pass the result to a field config-
ured for integer numbers vs. a date

field.

Note the use of the dummy definition
(variable def) used with the DEMO.-
PAG page report definition. Such
dummy definitions may have any pre-
fix filename, contain a variety of fields
to be used to accumulate or receive
derived data, and may be used with
either a batch update definition or any
line or page report definition. The sup-
plied DEMO.PAG produces a multi-
paged pseudo statement output as a
definition example.

Data entry editing features have been
modified somewhat. Only ‘<’and ‘>’
will move the cursor up and down
field by field. The use of °," and *.” have
been discontinued. This allows enter-
ing numbers beginning with a period.

When anywhere within a field, a de-
lete or back-space will print under-
scores from the present cursor posi-
tion to the end of the field. A 7" will
retype the field as its value was upon
initial entry and place the cursor on
the first character. Note that no
characters to the right of the cursor are
entered into the field when ‘'RETURN’
is pressed. A ‘7" retype followed by a
‘RETURN’ nulls the field. All field
characters remain on the screen until
over-typed.

When calling any function from any
menu, if the called program is not on
the operating disk, a message will be
displayed prompting the user to take
out the current program disk and sub-
stitute it with one containing the ap-
propriate ‘. INT’ program file.

Lifelines, February 1982



IBM’S DUL O G/ M-897

CP/EMULATOR extends the scope and capacity
of all of your software. With CP/EMULATOR,
CP/M-86 programs run quicker with faster file
access than with CP/M-86 itself.

Additionally, your program will enjoy all the
other DOS advantages, such as large file size,
dated directory displays, and more. The DOS
peripherals are already installed and DOS com-
mands are fully available. The package even
contains a utility program to transfer programs
and data files from a CP/M-86 diskette to a stan-
dard DOS diskette.

NO NEED TO LEARN A NEW SET OF UTILITIES

AND COMMANDS;

NO NEED TO END UP WITH TWO INCOMPATI-
BLE SETS OF DISKETTES;

NO NEED TO SPEND HUNDREDS OF DOLLARS
ON CP/M-86, WHEN CP/EMULATOR COSTS $75.

NO NEED TO WONDER WHICH OPTION IS
BEST FOR YOUR IBM PERSONAL COMPUTER.

Confused about operating system options for
your IBM Personal Computer? HAVE IT BOTH
WAYS WITH LIFEBOAT'S CP/EMULATOR™,
CP/EMULATOR solves the problem by permit-
ting you to use all the software written for IBM'’s
PC for both DOS and CP/M-86.

This high performance, low cost DOS utility al-
lows you to fully integrate and mix programs.
You can use a DOS editor to write a program,
compile it under a CP/M-86 compiler and ex-
ecute the finished application under DOS.

7." "(..-\\ g

PMAT itor-in-Chief

Perform miracles of manipulation on your keyboard with Lifeboat’s PMATE.

This new generation text editor is the most sophisticated text editor available today and is bristling with features previously
unavailable on microcomputers, making it ideal for virtually any program or data file editing.

PMATE'’s command set includes full screen single keystroke editing, horizontal scrolling, automatic disk buffering, macro
command language, text formatting, expression evaluation, conditional branching, I/0 with prompting, and other program-
ming language constructs. PMATE makes use of 11 buffers for storage, and includes commands permitting work on more
than one text at a time. Unique to PMATE is the facility for user customization. Keystroke functions can be redefined, and se-
quences can be programmed to directly execute macros. Video commands can be changed, and macro functions can be
written, to emulate any other editor with which you may be familiar. PMATE provides full side-scrolling, and can be used
with virtually ANY video terminal on the market. IF yOu use an editor, you need PMATE.

PMATE is the only text editor you'll ever need.

PMATE-86 is available for IBM's Personal Computer DOS, SB-86™ and MS-DOS™. Also available is PMATE for SB-80 and other
L CP/M-80-compatible operating systems.

Lifeboat Worldwide offers you the world's largest library of software from its offices in the U.S.A., UK., Switzerland, France,
West Germany and Japan.
SB-80 and SB-86 are trademarks of Lifeboat Associates

For more mformanon, senc to: PMATE and PMATE-86 are trademarks of Phoenix Software Asso. Ltd
N 2 MS-DOS is a trademark of Microsoft, Inc
Lifeboat Associates CP/EMULATOR is a trademark of Lifeboat Associates.
1651 Third Avenue CP/M-80 and CP/M-86 are registered trademarks of Digital Research, Inc

a This ad was designed by DocuSet™

ﬁ\ Copyright © 1981, by Lifeboat Associates

"5
h‘h—

New York, New York 10028
Tel: (212) 860-0300 . 4
TWX: 710-581-2524 (LBSOFT NYK) - N R
Telex: 640693 (LBSOFT NYK)\ el

LIFEBOAT HAS THE ANSWER

Lifelines, Volume I, Number 9

43



New Products

The products described below are
available from their authors, com-
puter stores, software distributors and
publishers.

Cache/Q
Queue Computer Corporation

This product is designed to enhance
the speed of a CP/M-80 system by a
factor as high as 35 times. Cache/Qre-
quires a CP/M-80 2.2 system with 64k
bytes of memory or less; it can take
advantage of bank-selected memory.
Transfers to and from the disk drives
are buffered, reducing the amount of
disk activity required for a given ap-
plication. Cache/Q is transparent to
user and system programs.

This product features an interactive
installation program, a reconfigura-
tion program through which a user
may specify which files or class of files
are to be buffered, and a display pro-
gram showing the operating statistics

of Cache/Q.

Comet-FORTH
Computer Methods

This product is designed only for use
on Cromemco computers. Most prim-
itives and some high level words are
written in assembler, for speed of exe-
cution. It is interactive, and Z80 as-
sembler code may be mixed with high
level Comet-FORTH code. It occupies
about 8k of memory, and is a stand-
alone operating system. Memory
space is reconfigurable.

A line editor and a full screen editor
are provided with the product.
Comet-FORTH is compliant with the
FORTH 79 standard; it is fully inter-
rupt-driven, to allow type-ahead,
overlap of computation and 1/0.

A multi-user version is called Comet
Multi-FORTH and permits up to eight
on-line terminals and an additional
number of non-terminal tasks. Each
user is always memory resident and
has 32k of dedicated memory. The
FORTH dictionary, assembler vocab-
ulary, and screen editor do not require
user memory. All users have access to
the system resources.

Graftalk
REDDING Group Inc.

This interactive graphics product is in-
tended for the business user, and is ori-
ented towards the creation of bar
charts, exploded pie charts, and other
line, point and symbol plots. A joy-
stick and digitization can be added.
Color is also fully supported.

Graftalk features more than 100 com-
mands, including multi-level com-
mands and windowing on the plotting
surface. Bar charts can be vertical,
horizontal, in reverse, shaded, in col-
or; axes can be labelled, and curves
added. Likewise pie charts can be
shaded, in color; labelling of the vari-
ous elements is possible. Line and
symbol charts can be implemented
with automatic scaling. These differ-
ent chart categories can be combined
into composites.

Text handling features include the ca-
pability to adjust character size, per-
form paragraphing, and erase selec-
tively. A compatible editor called
SCATE can be embedded to permit
easy text manipulation, without leav-
ing Graftalk.

Advanced users can employ declared
variables, separate axes, boxes, grids,
absolute and relative moves, three lev-
els of coordinate systems, windows,
viewports and digitizing.

The authors of Graftalk state that the
system requirements for this initial re-
lease are more restrictive than they
will be in the future. Graftalk requires
48k TPA, recommended for use with
graphic CRTs and plotters as primary
graphics devices; only printers which
can be dumped to from the CRT can
be used (Diablo, Epson or Anadex
with graphics). Graftalk runs on 8251
or SIO computers, requires CP/M-80
(2.x or above), MP/M or compatible
operating system. ADM-3A and 3A +
retrofit CRT’s as well as Televideo ret-
rofit CRT’s are supported. Plotters
supported follow: Tektronix 4662
with or without option 31; Hewlett-
Packard 7220, 7221, 7225; Houston
Instruments DMP3, DMP?7.

MAGSORT
Micro Applications Group

This SORT/MERGE/SELECT utility
requires no dedicated memory and is
easily callable from high level lan-
guages. It may be called from

CBASIC2, Microsoft BASIC Inter-
preter, Microsoft BASIC Compiler,
FORTRAN-80, Pascal/MT+ and
PL/I-80. A self-relocating bootstrap
routine writes the user program to
disk, then loads MAGSORT into
memory; so the entire memory is
available for sorting, a feature de-
signed to speed sorting. When sorting
is completed, MAGSORT reloads the
user program into memory and re-
turns with a status code. MAGSORT
may also be run standalone.

File size is defined by the operating
system and work space available; rec-
ord size is also limited only by avail-
able memory. Sorting is on up to ten
keys, ascending and descending inde-
pendently. Records may be selected or
excluded with up to four independent
keys. Select/Exclude comparisons
permit <, >, and =; wild card char-
acters are permitted in Select/Exclude
keys, and lower case letters may be
treated as upper case.

Merge allows two files to be merged in
sorted order, or appended to one
another in existing order. Work and
output disks may be changed during
processing. Up to the first 255 records
in a file may be skipped. Parameters
may be passed in a string from the user
program, or from a parameter file;
sorts can also be performed interac-
tively.

No special interfacing is required for
use with the host languages, and no re-
location is needed for different mem-
ory configurations. MAGSORT is
written in 8080 assembler and BASIC,
requires CP/M-80 1.4 or 2.2, or
CP/M or MP/M II; it supports 8080/
780 or 8085 CPU’s. A minimum disk
capacity of 50k per drive is required,
and a total disk capacity of 50k is
needed.

SB-80 Disk Operating System
Lifeboat Associates

SB-80 is designed to run on a broad
range of 8080/Z80-based systems, us-
ing floppy disks, hard disks or com-
binations of the types. It is fully com-
patible with CP/M-80 and available
only to OEM’s.

SB-80 allows use of files larger by a
factor of 16, includes an integral
background printing capability and is
designed to have a more flexible set of
intrinsic commands than does
CP/M-80. Fundamental utilities are

Lifelines, February 1982



provided, including a file-transfer
handler, text editor, assembler and de-
bugger.

SB-80 is intended for 8080/8085/
Z80-based microcomputers with a
minimum of 20 kilobytes of continu-
ous read/write memory starting at ad-
dress 0. (Where ROM exists in low
memory, the Lifeboat Associates
MMU board can remap memory and
optionally add 16 additional kilobytes
of RAM,; it is for Z80 systems only.)
S-100 (IEEE 696) systems, single-
board computers and desktop systems
can be suitable SB-80 environments.

Many controllers for floppy, mini-
floppy and/or hard disks can be used.
Where a CP/M-80 BIOS for the con-
troller is available in source code, it
can be adapted for SB-80 use. Where a
BIOS must be generated, SB-80 docu-
mentation provides sufficient infor-
mation. Four separate I/O devices
other than disk controllers are avail-
able through the system at any time,
selected from among as many as 16,
depending on the BIOS implementa-
tion.

The software that constitutes the oper-
ating system itself is in three parts: the
Disk Operating Subsystem (DOS),
SB-80’s file-manager, resides on
reserved system tracks of a bootable
disk; the Basic Input/Output Subsys-
tem (BIOS), the hardware-specific
segment, also resides on reserved
system tracks; the Command-Line In-
terpreter (CLI), which executes intrin-
sic commands and loads user pro-
grams and initiates their execution is

held on disk as a file.

Including page zero (addresses
0000-00FFH), the operating system re-
quires at least 10 kilobytes of memory.
This figure increases when the hard-
ware-dependent BIOS must be en-
larged, as for the inclusion of extra
/0 features. Excluding page zero, the
address at which the system resides in
memory can be determined by the
user.

Operating system facilities allow you
to create, delete, rename, read and
write both sequential files with vari-
able-length records and random-ac-
cess files of fixed record length. As
many as 16 disk drives are supported,
and file space is dynamically allocated
to maximize disk utilization. The max-
imum possible size of a file under

Lifelines, Volume II, Number 9

SB-80 is 128 megabytes. This 128 Mb
is also the maximum capacity of a sin-
gle drive, and is dynamically allocated
among files as needed.

SB-80's resident background printing
function eliminates the disadvantages
of despooling software not integral to
the operating system. Background
printing of files is queued, with as
many as six files in the queue at one
time. The operator can suspend, re-
sume or cancel the background print-
ing function, add files to the queue or
remove them from it at any time.
Batch processing is also integral to the
operating system.

New Publications

Don't

(Or How to Care For Your Computer)
Rodney Zaks

This book describes the proper way to
treat your computer and peripherals,
including media. Chapters give you
pointers on planning a computer
room, preserving and retaining sys-
tem documentation, handling security
for hardware and data; preventive
maintenance is also described.

How To Buy The Right Small Business
Computer System

C. Roger Smolin

This book attempts to answer the
questions prospective micro owners
should ask before buying a computer
for their office. It guides the reader on
the basics of how a computer oper-
ates, what to expect from it, how to
shop for and purchase it. In addition,
the businessman is instructed on pre-
paring for the new computer, and in-
stalling it.

How To Get A Free Desktop Computer
Vernon K. Jacobs

This book is not exactly what the title
implies, but rather another guide to
purchasing a small computer system.
However, in this publication, the im-
portance of good software is stressed
as a prerequisite for an efficient, cost-
effective system. Mr. Jacobs concen-
trates on the financial analysts and
planners, and their particular needs in
a personal computer and its software.

The Devil’'s DP Dictionary

This is a side-splitting spoof of the
computer trade’s jargon, spoofing the
sometimes ridiculous expressions we
use. It's a good book to relax and
laugh with.

Operating Systems

Description Version

These operating systems are available
from Lifeboat Associates, except where
otherwise mentioned.

CP/M-80 for:

Apple Il w/Microsoft BASIC 2.20B
Datapoint 1550/2150 DD/SS 2:21
Datapoint 1550/2150 DD/DS 2.21

Datapoint 1550/2150 DD/SS w/CYN 2.21
Datapoint 1550/2150 DD/DS w/CYN 2.21

Durango F-85 2.23
Heath H8 w/H17 Disk 1.43
Heath/Zenith H89 2.2
iCOM 3812 1.42
iCOM 3712 w/ Altair Console 1.42
iCOM 3712 w/IMSAI Console 1.42
iCOM Microfloppy (#2411) 1.41
iCOM 4511/Pertec D3000 Hard Disk 2.22
Intel MDS Single Density 1.4
Intel MDS Single Density 2:2

Intel MDS 800/230 Double Density 2.2
MITS Altair FD400, 510, 3202 Disk ~ 1.41
MITS Altair FD400, 510, 3202 Disk 2.2

Micropolis Mod I - All Consoles 1.411
MicropolisMod II - All Consoles  1.411
Micropolis Mod I 2.20B
Micropolis Mod 11 2.20B
Compal Micropolis Mod II 1.4
Exidy Sorcerer Micropolis Mod I 1.42
Exidy Sorcerer Micropolis Mod II 1.42
Vector MZ Micropolis Mod I1 1.411
Versatile 3B Micropolis Mod I 1.411
Versatile 4 Micropolis Mod II 1.411
Horizon North Star SD 1.41
Mostek MDX STD Bus 2.2
Ohio Scientific C3 2.24
Ohio Scientific C3-B/74 2.24B
Ohio Scientific C3-C'(Prime)/36  2.24B
Ohio Scientific C3-D/10 2.24A
Ohio Scientific C3-C 2.24A
Sol North Star SD 1.41
North Star SD IMSAISIO Console  1.41
North Star SDMITS SIO Console ~ 1.41
North Star SD 2.23A
North Star DD 1.45
North Star DD/QD 2.23A
Processor Technology Helios II 1.41
by Lifeboat/TRS-805 ¥4“(Mod I) 1.41
by Lifeboat/ TRS-80 Mod II 2.25C
by Cybernetics/ TRS-80 Mod 11 2.25
Hard Disk Modules

Description Version
Corvus Module 2.1
APPLE-Corvus Module 2.1A
KONAN Phoenix Drive 1.8
Micropolis Microdisk 1.92
Pertec D3000/iCOM 4511 1.6
Tarbell Module 1.5
OSICD-74 for OSIC3-B 1.2
OSI CD-36 for OSI C3-C’ 1.2
SA 1004 for OSIC3-D 1.1
SA 4008 for OSI C3-C 1.3

45



ZAPS0

(Editor's Note: This product brief of
ZAPS80, from Phase Four Systems,
Inc., was written by the author of
ZAP80, Mark Rollins.)

ZAP80 is an extensive, menu-driven
disk access utility for SB-80; CP/M-80,
and other compatible 8080/Z80 oper-
ating systems. It was originally writ-
ten to allow direct access to the disk
surface by specifying a track and sec-
tor number for any sector. Inits devel-
opment, it was first expanded to in-
clude extensive file utility servicing to
access and patch file sectors, as well.
Then, several additional functions
were added, such as direct memory
display, string search, file compare,
track initializing, and chaining.

There are four menus which display
the 51 commands available in ZAP80
to perform the above functions. In ad-
dition, there is a self-contained Con-
figure System command which allows
the user to install the cursor up, clear
screen, and cursor addressability ter-
minal controls used by ZAP. Of the
three, only the cursor up is required by
ZAP for proper screen displays; if the
other two are not provided, ZAP will
use its own internal routines.

ZAP80 simultaneously maintains two
sets of parameters for accessing the
disk: file parameters and logon pa-
rameters. The latter are called logon
because they refer to the current
logged-on drive, and include the com-
mands Select Drive, Set Track, and
Set Sector. The file parameters allow
access to any sector of a specified file,
while the logon parameters allow
direct access to the disk surface by
specifying a track and sector on the
logged-on drive. The file does not
have to be on the logged-on drive, and
can be left open while a logon sector is
accessed.

For file operations, ZAP80 maintains
an internal file control block, and all
file accesses are performed through
standard DOS function calls. Random
reads are made by the user specifying
either a relative address or a logical
sector number, which ZAP internally
translates to the proper file extent and
relative sector number within the ex-
tent, before making the function call.

46

For file reads, ZAP80 expects the
BIOS to perform a set track and set
sector during the read operation. If a
BIOS does not do so, the resulting file
parameter display of the track and sec-
tor values will be arbitrary. It should
be noted, however, that the track and
sector display here is a convenience
(allowing, for instance, subsequent
access to a file sector by using the
logon parameters) and does not mate-
rially affect actual file i/0 operations.

For logon parameter accesses, ZAP80
specifically recognizes the disk param-
eter headers of SB-80 2.5+, CP/M
2.0+, and DMADQOS 8.0+ ; all others
default to CP/M 1.4. For CP/M 1.4,
ZAP uses its own internal parameters,
which are user modifiable. There are
currently provisions for two different
drive environments, initially set to
‘standard’ 8-inch single density for the
first, and double density (52 sectors/
track) for the second. The user can
then toggle between the two to set the
current logon environment.

Included in ZAP's internal parameter
area are the sector translation tables
for the two drive environments. Let's
look at a sample of how ZAP works
by discussing two demonstrations: (1)
patching one of these translation tab-
les, and (2) ‘unerasing’ a deleted file.

Using ZAP to patch a translation table

When ZAP is run, the translation ta-
bles are located in memory beginning
at 1a0h for the first table, and 1cOh for
the second. We shall work with the
first table, which is initially setup for
an 8-inch, single density drive with
‘standard’ skew (i.e., if your BIOS is
set up for ‘normal’ CP/M 1.4 stan-
dards, when you ask to read ‘logical’
sectors 1, 2, 3, 4, etc. in that order,
you will actually be reading sectors 1,
7. 513,419, <etc. This is ‘called
‘skewing’.).

Let’s assume, for our purposes, that
your BIOS in fact does not need this
skew to be known by the outside
world (that is, external programs),
and that you don't want the table to
read 1, 7, 0d (which is hex for 13), 13
(hex for 19), etc. Here’s how you pro-
ceed:

Type on the command line at the con-
sole (before performing this demon-
stration, be sure to use the CS (Config-
ure System) command to at least put
in the cursor up terminal control,

otherwise the display will not match
the following discussion):
ZAP ZAP.COM

After ZAP signs on, type a carriage re-
turn. This will display the first sector
of ZAP. Note that the address dis-
played at the left side of the screen is
0100, even though it is (relative) ad-
dress 0000 in the file. This is because
ZAP maintains a File Base which is in-
itially set to 0100 to account for the
fact that this is where programs are
normally loaded in memory. If you
have a program which originates at a
different location in memory, you can
use the FB (File Base) command to
have the display match an assembly
listing (for instance).

Now type a second carriage return,
which will display the second sector.
The display should look like fig. 1 in
this article. To patch the first table
(recall it is at location 1a0h), use the
HP (Hex Patch) command; type
HP 1a0

You will see the beginning of the sector
blanked out up to 1a0, and the cursor
positioned at the byte at 1a0, after
which you type 01, followed by 02,
03, 04, 05, 06, 07, 08, 09, Oa, Ob, Oc,
0d, Oe, 0f, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1a. At this point, you end the
patch by typing <escape>, and then
write it back to disk by using the FW
(File Write) command.

The sector is now patched with the
new table. To actually use it, you must
first exit ZAP, and then reenter, since
it has been patched on disk, but not in
memory in the running program.

‘Unerasing’ a deleted file

Let’s say you have accidentally deleted
(ERAsed) a file. You can use ZAP to
unerase it. Here’s how it is done: On
the command line at your terminal,
type
ZAP

ZAPB80 signs on with the logon param-
eters preset to the first sector of the
directory (normally, track 2, sector 1).
Use the RL (Read Logon) command to
read the first sector. The display
should look something like fig. 2 in
this article (assuming it is the very first
file that was deleted).

As you will notice, each sector of the
directory has the directory control
blocks, called DCB’s (you will usually
see them referenced as FCB’s in the
CP/M documentation; the difference
is that the FCB is the control block

Lifelines, February 1982



used when actually performing thei/o
operation and is either 33 or 36 bytes
long, depending on whether the oper-
ation is sequential or (for CP/M
2.0+) random, where the DCB is the
first 32 bytes of an FCB as it is actually
written to the directory), for four di-
rectory entries. They may be single-
extent entries for four files, or multi-
ple-extent entries for less than four
files.

In either case, the operating system
places Oe5h in the first byte of the DCB
to signify that the file has been erased

COMMAND==>

file parameters== track 4 sector 2

logon parameters== track 2 sector 1 drive B

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE

0180 | 02 1B 3D 00 00 00 00 00 00 00 00 00 00 00 00

0190 | 00 00 00 00 00 00 00 00 00 20 20 00 00 00 00

O1AO0 | 01 07 OD 13 19 05 OB 11 17 03 09 OF 15 02 08

01BO | 14 1A 06 0C 12 18 04 0A 10 16 00 00 00 00 00

01cO | 01 02 07 08 OD OE 13 14 19 1A 1F 20 25 26 2B

0LDO | 31 32 03 04 09 OA OF 10 15 16 1B 1C 21 22 27

OLEO | 2D 2E 33 34 05 06 OB OC 11 12 17 18 1p 1E 23

01FO | 29 2A 2F 30 00 00 00 00 00 00 00 00 00 00 00

COMMAND==>RL

file parameters== track 4 sector 2

logon parameters==> track 2 sector 1 drive B

00 01 02 03 04 05 06 07 08 09 0A OB OC OD OE

00 | E5 53 59 53 54 45 4D 20 20 43 4C 49 00 00 00
10 | 02 00 03 00 00 00 00 00 00 00 00 00 00 00 00
20 | 00 58 44 53 20 20 20 20 20 43 4F 4D 00 00 00
30 | 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 | 00 58 44 20 20 20 20 20 20 43 4F 4D 00 00 00
50 | 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 | 00 58 44 46 20 20 20 20 20 43 4F 4D 00 00 00
70 | 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00

COMMAND==>

and the directory entry is free for use
by another file. In order to ‘unerase’
the first file, type

HP

followed by a carriage return (this will
position you at the first byte of the sec-
tor), and then type

00 (¢ this assumes user 0)
which undeletes the file. Then use the
WL (Write Logon) command to write
the sector back to disk. This command
prompts you to make sure that it is the
logon sector you want to write. After
you respond Y’, the sector will be
written back, and the file will reappear

in the directory (note: make sure you
unerase ALL of the directory entries
for the file).

By using the above procedures, files
can be edited (much faster than using
an editor which writes the entire file
back to disk, though insertions are not
possible), sectors or directory entries
can be reconstructed, and files can be
compared (ZAP displays the sectors
which have differences) and then
patched to make them the same. And
these are only a few of the powerful
features of this new utility.

file= B:ZAP.COM LSN=001

dens=64(o/s)
OF 0123456789ABCDEF
00 Sty agete¥ehare e tln e .3
OB sre13Ters 0 's o876 0 5%
20 S e e v Wi Wobus %&+,
28 12 e icaeinai "'(
24 —34..........#$
00 )*/0..... .

file= B:ZAP.COM LSN=001

dens=64(0o/s)
OF 0123456789ABCDEF
20 "JSYSTEM €LI. s
007 & 5% v e s
07 ¢ i XDS COM
OO e TR
0D . XD COM.
OO0 7 et o s JoralioNomaumte G
0A .XDF COM.
00 “as sheare erestae W ieses

Lifelines, Volume II, Number 9

47



48

(continued from page 2)
OUTPUT commands allow a byte to
be sent to/from a specified I/O port at
the command line level while in DE-
BUG.

The' standard SB-86 programs (e.g.
DEBUG, COMMAND, EDLIN) all
automatically treat the the last com-
mand as the template for the next.
Characters may be edited at any point
in a line without having to retype the
remainder of the line to the right of the
cursor, etc.

An interesting safeguard is the use of a
duplicate directory with a read occur-
ring after every write to the direc-
tory(s). Those using single disk sys-
tems and those who prefer to store
data on separate diskettes will be
pleased to learn that there is no need to
log in disks by typing a control-C.
Also there is no physical file/disk size
limitation, unlike many operating sys-
tems which are restricted to eight meg-
abytes. That is, SB-86 doesn't do silly
things like breaking a twenty-four
megabyte disk into three logical
drives.

There's no overhead for non-128-byte
sectors either, which is particularly
nice when different physical sectors
are to be supported.

So in summary, it's easy to see why
IBM chose SB-86, since among other
things, it's written entirely in 8086
assembly language, and not some
kludge which was translated from an
8-bit operating system. The file struc-
ture is fast and efficient since “extents”
are not employed; therefore access to
the directory track is minimized.

And on, and on, and on ... Take a
look at the IBM DOS manual if you
want to the way operating system doc-
umentation should be prepared.
You'll recognize it immediately. It's
the one without the copyright notice
printed on every page.

Those of you interested in sixteen-bit
microprocessor architecture should
take a look at “16-Bit Microproces-
sors”, a paperback published by How-
ard W. Sams & Company, Incorpo-
rated. Whether hardware is of great
interest or not you should find the
benchmarks provided for the 8086,
Z8001 and Z8002, LSI-11, TI9900,
68000 and the NS1600 fascinating.
Bubble sort, ASCII string search, mul-

tiplication/division and lookup table
algorithms are provided for each mi-
croprocessor and the corresponding
execution times allow for an interest-
ing comparison of these widely vary-
ing architectures.

By the way, don't get the idea that you
are going to be left behind in the rush
to jump on the 8088/8086 band-
wagon. Those of you with 5100 sys-
tems will be pleased to learn that a
number of manufacturers are offering
S100 cards with 8088 or 8086 proces-
sors which will run SB-86. One of
these offers both 8085 and 8088 pro-
cessors so that you can run either 8- or
16-bit software anytime you wish.

Furthermore, most of your favorite
programs are being transported to
these 16-bit environments. And, as
mentioned earlier, utilities available
allow you to move your assembly lan-
guage programs easily. And of course
anything written in Microsoft high
level languages is a piece of cake. Just
recompile and away you go ...
PMATE is undoubtedly the best avail-
able text editor for micros and is al-
ready running on the IBM Personal
Computer as well as other 8088/8086
machines.

TELECOMMUNICATIONS

More of you should be exploiting the
telecommunications capabilities of
micros, whether for accessing your
system remotely or the systems cur-
rently available to you, many of which
offer programs and services at no
charge.

The modem world has long been dom-
inated by the PMMI board for S100
machines, but until recently no com-
parable counterpart has been avail-
able for non-S100 machines. How-
ever, Hayes has recently announced
the “SmartModem”, which among
other things is a very “Smart Idea”.
This unit connects to the RS232 port of
your microcomputer and offers tone
and rotary auto-dialing as well as
auto-answer. Also provided is a
speaker to permit the user to listen in.
Status information is provided by the
integral LEDS which indicate current
operating mode, auto-answer, carrier
detect, off hook, receive data, send
data, terminal ready and modem
ready. While use of this unit is re-
stricted to 300 Baud, it's clearly a

nice design.

Those of you who have not gotten into
the “CBBS"” world (Computerized Bul-
letin Board System) should consider
investigating this free source of classi-
fied ads and public domain software.
Perhaps one of the most sophisticated
of such systems in the country is that
of Kelly Smith (805-527-9321) who
has twenty megabytes of programs on
line for the taking. Just dial up, browse
around and pick up whatever is of in-
terest. Most systems have a Telephone
Directory online which you can trans-
fer to your system and use to contact
any of the CBBSs in the country. It's
reassuring to know that there are peo-
ple who care enough about microcom-
puters to provide the kind of service
Kelly offers at no charge to the users.

These systems require a considerable
amount of maintenance and users are
often more demanding than one
would expect paying customers to be.
Recently Kelly mentioned that one of
the drives had developed bearing
problems. He decided that he would
just let it grind on and fix it when he
got around to it. Unfortunately, the
grinding produced metal filings which
found their way to the surface of the
disk and along came the head and flew
right into a metallic mountain. Such
things don’t contribute much to aero-
dynamic stability.

Kelly gave up a weekend and rebuilt it
right on the spot, so it was soon avail-
able for use. In the meantime some
users were irate at suffering the
downtime. The moral of that story is
when your disk speaks ... listen ...

Ward Christensen started the under-
ground micro-communications move-
ment, which has grown by leaps and
bounds, with his now legendary pro-
gram MODEM. As you many of you
are aware, Ward has made a lot of in-
valuable contributions to the micro-
computer world in terms of communi-
cations programs and protocols,
CBBS®s, disassemblers, disk patching
programs, standards for documenta-
tion of microcomputer source code
and much, much more.

BELL, BOOKS, BIBLIOGRAPHIES
AND DATA BASES

Those of you who are interested in
UNIX will find Bell Laboratories’

Lifelines, February 1982



documentation most informative. In particular, pick up
a copy of “DOCUMENTS FOR USE WITH THE UNIX
TIME-SHARING SYSTEM" available from Bell. This
document includes, among other things, sections called
“UNIX for Beginners” and “UNIX Summary” respec-
tively which give a good overview of the operating sys-
tem and its many features. UNIX for Beginners is au-
thored by our old friend Brian W. Kernighan and con-
tains an annotated bibliography.

Speaking of bibliographies, be sure that you take a look
at Douglas R. Hofstadter’s book “Godel, Escher and
Bach an Eternal Golden Braid”. This fine example of
scholarly work contains a fascinating annotated bibliog-
raphy. Hofstadter is currently the author of the “Mathe-
matical Games” column in Scientific American.

If you are looking for information on 8086 assembly lan-
guage don’t miss “The 8086 Book” by Russell Rector and
George Alexy. This McGraw-Hill publication covers all
aspects of the 8086 instruction set and is filled with il-
lustrative examples.

If data base management is of interest to you take a look
at the November 17, 1981 issue of Electronics, page 129.
There’s an interesting article on Micro Data Base Systems
(MDBS). Sequential, direct, ISAM, CODASYL and
MDBS are discussed.

There is an interesting book which has just been pub-
lished by Addison-Wesley Publishing Company called
“Real Time Programming - Neglected Topics” by Caxton
C. Foster.

The author presents an excellent introduction to the topic
of interrupts; both simple and hierarchical and sema-
phores are also treated in an enlightening manner. This
text is based upon a course at the University of Massa-
chusetts called “Real Time Programming” and includes a
number of interesting hardware examples. This book
contains a number of topics which are not discussed in
simple terms elsewhere, ranging from The Sampling
Theorem to communication over restricted pathways.

* * *

Your response to the editorials of recent months has been
most encouraging and many of the topics suggested for
discussion will be covered in future editorials, so keep
those cards and letters coming!

Edward H. Currie

Lifelines, Volume II, Number 9

IBM,
WE'VE GOT
GOOD NEWS.
AND WE'VE GOT
BAD NEWS.

First, the good news:
Introducing the RBTE-80,™ our Remote
Batch Terminal Emulator that enables an
SB-80™ or any CP/M-80®compatible com-
puter to interact with an IBM main frame*
and perform just like an IBM terminal.

Now. the bad news:

End-users can now choose between
buying your expensive IBM terminal or our
inexpensive RBTE-80 program.

For more details on RBTE-80, distributed
exclusively and fully supported by Lifeboat
Associates, mail the coupon.

Lifeboat Worldwide offers you the world's
largest library of software from its offices in the
U.S.A., Japan, U.K., Switzerland, W. Germany,
and France.

*Or any other computer terminal using IBM Bisync protocols, such as IBM
2770, IBM 2780, IBM 2968, IBM 3741 or IBM 3780 remote batch terminal.

R i, S TR

Mail to: Lifeboat Associates, 1651 Third Ave., NY,
NY 10028 or call (212) 860-0300 or TWX 710-581-2524
(LBSOFT NYK)

[0 Please send details on RBTE-80.™
[JPlease send a free Lifeboat Software Desk Reference.™

Name

- G I S SIS I SIS GEED GEED GEED G GEEN G G G
3
2

Software Desk Reterence, SB-80 and RBTE-80 are

trademarks Associ 3

CP/M-801satr { Digit

Research
Software With
Full Support

| | Lifeboat Associates, |

World's foremost software source.

L_________________J

Copyright (©) 1982, by Lifeboat Associates.

49



VERSION LIST

The listed software is available from the authors, computer stores
distributors, and publishers. Except in the cases noted, all software
requires CP/M-80, SB-80, or compatible operating systems.

New Products and new versions are listed in boldface.

Product S M
ACCESS-80 1.0

Accounts Payable/Cybernetics 3.1

Accounts Payable/MC 1.0

Accounts Payable/Structured Sys 1.3B

Accounts Payable/Peachtree 07-13-80
Accounting Plus

Accounts Receivable/Cybernetics 3.1

Accounts Receivable/MC 120

Accounts Receivable/Peachtree 07-13-80
Accounts Receivable/Structured Sys 1.4C

Address Management System 1.0

ALDS TRSDOS 3.40
ALGOL 60 4.8C
ANALYST 2.0

APL/V80 3.2

Apartment Management (Cornwall) 1.0 1.0,
ASM/XITAN 3Ll

Automated Patient History 12

BASIC Compiler 53 5.3
BASIC-80 Interpreter 5.21 521,
BASIC Utility Disk 2.0 2.0
BOSS Financial Accounting System 1.08

BOSS Demo 1.08

BSTAM Communication System 4.5 4.5
BDS C Compiler 1.45 1.45T
Whitesmiths’ C Compiler 2.0

BSTMS 1.2 1.2
BUG / uBUG Debuggers 2.03

CBASIC2 Compiler 2.08

CBS Applications Builder 1.3

CIS COBOL Compiler 44,1

CIS COBOL Compact 3.46 3.46
FORMS 1 CIS COBOL Form Generator 1.06 1.06
FORMS 2 CIS COBOL Form Generator 1.1,6a

Interface for Mits Q70 Printer

COBOL-80 Compiler 4.01 4.01
COBOL-80 PLUS M/SORT 4.01

CONDOR 11 2.06

CREAM (Real Estate Acct'ng) 2.3

Crosstalk 1.4
DATASTAR Information Manager 1.101
Datebook-II 2.03

dBASE-II 2.02A

dBASE-II Demo 2.02A

Dental Management System 8000 8.7A

Dental Management System 9000 1.07

DESPOOL Print Spooler 24A

DISILOG Z80 Disassembler 4.0 4.0
DISTEL Z80/8080 Disassembler 4.0
Documate/Plus 1.4

EDIT Text Editor 2.06

EDIT-80 Text Editor 2.02 2.02
FABS-1 2.6

FABS II 4.11

FILETRAN 1.20
FILETRAN 154

FILETRAN 1:5

Financial Modeling System 2.0

Floating Point FORTH 2

Floating Point FORTH 3

FORTRAN-80 Compiler 3.43 3.43
FPL 56K Vers. 2.6

FPL 48K Vers. 2.6

General Ledger/Cybernetics 1.3C

General Ledger/MC 1.0

General Ledger/Peachtree 07-13-80
General Ledger/Structured Sys 1.4C

50

P

8080/Z80
280
8080/Z80
8080

8080/Z80
280
8080/Z80
8080
8080
8080
8080
8080
8080
Z80
8080
280
8080
8080
8080
8080
8080
8080
8080
8080
8080
8080
Z80
8080
8080
8080
8080
8080
8080

8080
8080
8080
8080

780

8080
8080
8080
8080
8080
8080
8080

280
8080/Z280
8080

280

8080
8080
8080/Z80

8080/280
8080/280
8080

MR

54K
64K
56K
52K
48K
64K
64K
56K
48K
56K

32K
24K
52K
48K

48K
48K
40K
48K
48K
48K
32K
32K
60K
24K
24K
32K
48K
48K
32K

48K
48K
48K
64K

48K
48K
48K
48K
48K
48K

36K

32K
48K
32K
32K

32K
48K
28K
28K
36K
56K
48K
48K
56K
48K
52K

January 13, 1982
Standard Version
Modified Version

Processor
R Memory Required

S 22

Needs RM/COBOL

For CP/M 2.2

w/It Works run time pkg.
Needs BASIC-80 4.51

Needs RM/COBOL

CP/M2.2

Needs BASIC-80 4.51

w/It Works run time pkg.

Requires 2 drives

Needs TRSDOS. TRSDOS Macro-80

Needs CBASIC2, QSORT/ULTRASORT

Needs APL terminal
Needs CBASIC2

w/Vers. 4.51,5.21

Needs 2/3- drives w/min 200k each, & 132-col. printer

w/‘C’ book

w/CRUN(2,204P, & 238)
Needs no support language

CP/M 1.41 or 2.XX

CBASIC needed

Needs 80x24 terminal

Needs CBASIC
Needs CBASIC

Zilog mnemonics
Intel mnemonics, TDL extensions

1-way TRS-80 Mod I, TRSDOS to Mod I CP/M
Needs TRSDOS. 2-way TRS-80 Mod I, TRSDOS
& Mod I CP/M

1-way TRS-80 Mod II, TRSDOS to Mod II CP/M

Needs RM/COBOL

Needs CP/M 2.2 or MP/M
Needs BASIC-80 4.51

w/It Works Package

Lifelines, February 1982



VERSION LIST

Product S M P MR

General Ledger 1I/CPaids 14 8080 48K Needs BASIC-80 4.51
GLECTOR Accounting System 2.02 8080 56K Use w/CBASIC2,Selector III
GLECTOR IV Accounting System 1.0 8080 Needs Selector IV

HDBS 1.05A + 52K

IBM/CPM 8% { 8080

Insurance Agency System 9000 1.06 8080 Needs CBASIC

Integrated Acctg Sys/Gen'l Ledger 8080 48K Needed for 3 pkgs. below
Integrated Acctg Sys/Accts Pyble 8080 48K

Integrated Acctg Sys/Accts Revble 8080 48K

Integrated Acctg Sys/Payroll 8080 48K

Interchange 780 32K

Inventory/MicroConsultants 5:3 8080/280 56K Needs CP/M 2.2
Inventory/Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Inventory/Structured Sys 1.0C 8080 52K w/It Works Package

Job Cost Control System/MC 1.0 8080/280 56K Requires CP/M 2.2

JRT Pascal System 14 8080 56K

LETTERIGHT Text Editor 1.1B 8080 52K

LINKER Z80

MAC 2.0A 8080 20K

MACRO-80 Macro Assembler Package 3.43 3.43 8080/Z80

Magic Typewriter 3 Z80 48K

Magic Ward 1.11 8080 32K

MAGSAM III 4.2 8080 32K

MAGSAM IV 1.1 8080 32K Needs CBASIC

MAILING ADDRESS Mail List System 07-13-80 8080 48K

Mail-Merge 3.0 8080

Master Tax 1.0-80 8080 48K

Matchmaker 8080 32K

MDBS 1.05A + 48K

MDBS-DRS 1.02 i 52K

MDBS-QRS 1.0 E 52K

MDBS-RTL 1.0 =F 52K

MDBS-PKG f 52K w/all above MDBS products
Medical Management System 8000 8.7a 8080 Needs CBASIC

Medical Management System 9000 1.07 8080 Needs CBASIC

Microcosm 280 CP/M 2.X or MP/M
Microspell 4.3 8080 48K Needs 150K /drive
Microspell Demo 1.0 For Dealers Only

Microstat 2.04 8080 48K Needs BASIC-80, 5.03 or later
Microstat for Apple 2.0

Mince 2.6 8080 48K

Mince Demo . 2.6 8080 48K

Mini-Warehouse Mngmt. Sys. 5.5 8080 48K Needs CBASIC

Money Maestro 1.2 8080/780 48K CP/M1.4o0r2.2

MP/M-1 1.0

MP/M-II 2.0 8080 48K Needs MP/M

MSORT 1.01 8080 48K

Mu LISP-80/Mu STAR Compiler 2.10 2:12 8080

Mu SIMP / Mu MATH Package 2410 8080 muMATH 80

NAD Mail List System 3.0D 8080 48K

Nevada COBOL 2.0 8080 32K

Order Entry w/Inventory/Cybernetics Z80 Needs RM/COBOL

Panel 2.2 44K Also for MP/M

PAS-3 Medical 1.77 8080 56K Needs 132-col. printer & CBASIC
PAS-3 Dental 1.63 8080 56K Needs 132-col. printer & CBASIC
PASM Assembler 1.02 780

Pascal/M 4.02 8080 56K

PASCAL/MT Compiler 3.2 8080 32K

PASCAL/MT + w/SPP 5.5 8080 52K Needs 165K /drive
PASCAL/Z Compiler 4.0 8080 56K

Payroll/Cybernetics, Inc. Z80 Needs RM/COBOL
Payroll/Peachtree 07-13-81 8080 48K Needs BASIC-80 4.51
Payroll/Structured Sys 1.0E 8080 60K w/It Works run time pkg.
PEARL SD 3.01 8080 56K w/CBASIC2,Ultrasort 11
PLANBSO Financial Package (Z80/8080) 2.1a 8080 56K 2380/8080

PLAN80 Demo 1.0

PL/I1-80 1.3 8080 48K

PLINK I Linking Loader 3.28 Z80 24K

PLINK-II Linking Loader 1.10A 280 48K

PMATE 3.02 8080 32K

PRISM/ADS 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
PRISM/IMS 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
PRISM/LMS 2.0.1 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
POSTMASTER Mail List System 3.5 3.5 8080 48K

Professional Time Acctg 3.11a 8080 48K Needs CBASIC2

(continued next page)
Lifelines, Volume I, Number 9 51



VERSION LIST

Product S M E MR

Programmer’s Apprentice 8080/Z80 56K Needs BASIC-80

Property Management Program (AMC) 4.2 Z80 48K Needs CBASIC 2.07+, CP/M-80 2.0+
Property Management System 07-13-80 8080 Needs BASIC-80 4.51
Property Manager 1.0 8080 48K Needs CBASIC

PSORT 1.2 8080

QSORT Sort Program 2.0 8080 48K

Real Estate Acquisition Programs 2.1 8080 56K Needs CBASIC

Remote 3.01 280

Residential Prop. Mngemt. Sys. 1.0 280 48K

RM/COBOL Compiler 1.3C 8080 48K w/Cybernetics CP/M 2
RAID 5.0.2 5.0.2 8080 28K Modified for TRS-80 Model-I only!
RAID w/FPP 5.0.2 5.0.2 8080 40K

RECLAIM Disk Verification Program 2.1 8080 16K

SBASIC 5.4 8080 48K

Scribble 1:3 8080

SELECTOR-III-C2 Data Manager 3.24 3.24 8080 48K Needs CBASIC
SELECTOR-IV 2.17. 8080 52K Needs CBASIC

Shortax 1.2 780 48K TRSDOS,MDOS too, needs BASIC-80 5.0
SID Symbolic Debugger 14 8080 N/A-Superbr'n

SMAL/80 Programming System 3.0 8080 For CP/M 1.x

Spellguard 2.0 8080/280 32K Needs Word Processing Program
Standard Tax 1.0 8080 48K Needs BASIC-80 4.51
STATPAK 1:2 1.2 8080 Needs BASIC-80 4.2 or above
STIFF UPPER LISP 2.6 8080 48K

STRING BIT FORTRAN Routines 1.02 1.02 8080

STRING/80 bit FORTRAN Routines 1.22 8080

STRING/80 bit Source 1.22 8080

SUPER SORT I Sort Package 1.5 8080 Max. record =4096 bytes
SELECT 8080/280 40K

T/MAKER II 2.4 8080 48K Avail. for CDOS
T/MAKER II DEMO 2.4 8080 48K

TEX Text Formatter 2.1 8080 36K

TEXTWRITER-III 3.6 3.6 8080 32K

TINY C Interpreter 800102C 8080

TINY C-II Compiler 800201 8080

TRS-80 Customization Disk 1.3C 8080

ULTRASORT II 4.1B 8080 48K

Lifeboat Unlock 1.3 8080 Use w/BASIC-80 5.2
VISAM 2.3p 8080 48K

Wiremaster 780 Needs 180K /drive
Wordindex 3.0 8080 48K Needs WordStar
Wordmaster 1.07A 8080 40K

WordStar 310 8080 48K

WordStar w/MailMerge 3.0 8080 48K

WordStar Customization Notes 3.0 8080

XASM-05 Cross Assembler 1.05 8080 48K

XASM-09 Cross Assembler 1.07 8080 48K

XASM-51 Cross Assembler 1.09 8080 48K

XASM-F8 Cross Assembler 1.04 8080 48K

XASM-400 Cross Assembler 1.03 8080 48K

XASM-18 Cross Assembler 1.41 8080

XASM-48 Cross Assembler 1.62 8080

XASM-65 Cross Assembler 1.97 8080

XASM-68 Cross Assembler 2.00 8080

XYBASIC Extended Interpreter 21 8080

XYBASIC Extended Disk Interpreter 211 8080

XYBASIC Extended Compiler 2.0 8080

XYBASIC Extended Romable 2.0 8080

XYBASIC Integer Interpreter 1.7 8080

XYBASIC Integer Compiler 2.0 8080

XYBASIC Integer Romable 1.7 8080

ZAP-80 1.4 8080 Needs 50K /drive

Z80 Development Package 3.5 280 N/A-Magnolia,Superbr'n,mod.CP/M
ZDM/ZDMZ Debugger 1.2/2.0 Z80 For N'Star, Apple, IBM 8"
ZDT Z80 Debugger 1.41 1.41 280 N/A-Superbr'n,mod.CP/M
ZSID Z80 Debugger 1.4A 780 N/A-Superbr'n,mod.CP/M

+ These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

52 Lifelines, February 1982



WIN AN IBM' PERSONAL COMPUTER
FROM THE NEW MAGAZINE
THAT FEATURES THEM.

ANNOUNCING PC-
THE INDEPENDENT
GUIDE TO IBM
PERSONAL
COMPUTERS.

If you're interested in the
new IBM Personal Computer,
you’ll be very interested in new
PC magazine.

Packed with vital information,
PC will help you keep up with the
ever-expanding variety of uses for
IBM Personal Computers. PC will
provide hundreds of helpful tips
on adapting Personal Computers for
your own needs, and keep you up-
to-date on all new developments af-
fecting IBM ‘‘PCs’’ and the people
who use them.

PC even has a special department
called PC-Lab™ to evaluate hard-
ware, software and supplies that
can be used with IBM Personal Com-
puters—helping you choose those
that best suit your needs.

When IBM introduced its Personal
Computer, an IBM executive said, ‘‘If
you could choose one word to describe
this system, it would be ‘quality.’ >’ That
will also be the guiding light for PC
magazine—in its easy-to-understand
writing, its colorful design, and par-
ticularly in its devotion tv you, the
reader.

PC’s premiere issue will be out in
January, and no one who wants to
know more about IBM Personal Com-
puters should be without it—or any of
the informative issues to follow. So if
you’re interested in IBM Personal Com-
puters, be a PC Charter Subscriber.

OUR NO-RISK
TRIAL OFFER

PC’s special offer for Charter Sub-
scribers is the first six issues for just
$12, a $6 saving from the single-copy
price. And if you’re not satisfied with
your first issue for any reason, you can

Charter Issue

cancel and get a refund. Simply write ‘‘I
want a refund”” on the mailing label of
your first copy, send it back to us within
10 days, and PC will refund your pay-
ment in full plus 20¢ to pay for your
stamp.

ANNOUNCING THE PC
“PC’’ GIVEAWAY.

PC wants to know who’s interested in
the new IBM “‘PC,”’ so we’re giving one
away to help gauge public interest. You
could be the one to win our prize—an
IBM Personal Computer system unit
(16K) with keyboard and color/graphics
monitor adapter. (Available IBM products
of equal value may be substituted if you
prefer.)

You don’t have to subscribe to enter
our Giveaway drawing; just fill out and
mail the ‘‘Giveaway’’ end of the double
coupon below. But why not use the
other half of the coupon to enter your
subscription at the same time. After all,
with our no-risk
trial offer, you
can’t lose. And
you’ll be sure not
to miss out on
PC’s information-
filled Premiere
Issue.

R D S D W 6D S 5 e :

GIVEAWAY RULES

[J Mail entries postpaid to the address on
the entry blank. Entries must be postmarked
before midnight, March 1, 1982. Drawing
will be held, and the winner notified by
April 1, 1982. Prize delivery date will be

subject to IBM product availabilities. [

Entries must be on an official entry form

or its exact copy. [] You may enter as

many times as you wish, but each entry
must be mailed in a separate envelope.
[J Employees of Software Communica-
tions, Inc., its affiliates, dealers,
distributers, advertising agencies and
media not eligible. [ Void where pro-
hibited, taxed or restricted by law.

suBscrIBe T0 PC
NOW, AT NO RISK.

D YES I want tobe a
Charter Subscriber to
PC. My charge information
or check for $12 made out
to PC is enclosed.

j---------

-

PC
1239 21st Avenue
San Francisco, CA 94122

Name

Address:

City

State Zip
[JVisa [ MasterCard [] Check Enclosed

Acct. #

Exp. Date Bank # (MConly)

Signature

L

ENTER THE PC
“PC"" GIVEAWAY.

] YES Eenter my name in

PC's drawing to give away an

IBM Personal Computer.

Area Code/Phone#

| now have:[] an IBM Personal Computer
[J another personal computer
[J no personal computer

‘-----------------------J

*PC is an independent journal, not affiliated in any way with International Business Machines Corporation. IBM is a registered trademark of International Business Machines Corporation. PC and PC-Lab are trademarks

of Software Communications, Inc.






